![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spsbc | Structured version Visualization version GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2490 and rspsbc 3659. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2490 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | sbsbc 3580 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | sylib 208 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
4 | dfsbcq 3578 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | 3, 4 | syl5ib 234 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
6 | 5 | vtocleg 3419 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1630 = wceq 1632 [wsb 2046 ∈ wcel 2139 [wsbc 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1635 df-ex 1854 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-v 3342 df-sbc 3577 |
This theorem is referenced by: spsbcd 3590 sbcth 3591 sbcthdv 3592 sbceqal 3628 sbcimdv 3639 sbcimdvOLD 3640 csbiebt 3694 csbexg 4944 pm14.18 39149 sbcbi 39269 onfrALTlem3 39279 csbeq2gOLD 39285 sbc3orgVD 39603 sbcbiVD 39629 csbingVD 39637 onfrALTlem3VD 39640 csbeq2gVD 39645 csbunigVD 39651 |
Copyright terms: Public domain | W3C validator |