Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfvlem Structured version   Visualization version   GIF version

Theorem sprsymrelfvlem 42065
Description: Lemma for sprsymrelf 42070 and sprsymrelfv 42069. (Contributed by AV, 19-Nov-2021.)
Assertion
Ref Expression
sprsymrelfvlem (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
Distinct variable groups:   𝑃,𝑐,𝑥,𝑦   𝑉,𝑐,𝑥,𝑦

Proof of Theorem sprsymrelfvlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . 5 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑉 ∈ V)
2 eleq1 2718 . . . . . . . . . . . 12 (𝑐 = {𝑥, 𝑦} → (𝑐𝑃 ↔ {𝑥, 𝑦} ∈ 𝑃))
3 vex 3234 . . . . . . . . . . . . 13 𝑥 ∈ V
4 vex 3234 . . . . . . . . . . . . 13 𝑦 ∈ V
5 prsssprel 42063 . . . . . . . . . . . . . . 15 ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑥, 𝑦} ∈ 𝑃 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑉𝑦𝑉))
653exp 1283 . . . . . . . . . . . . . 14 (𝑃 ⊆ (Pairs‘𝑉) → ({𝑥, 𝑦} ∈ 𝑃 → ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑉𝑦𝑉))))
76com13 88 . . . . . . . . . . . . 13 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
83, 4, 7mp2an 708 . . . . . . . . . . . 12 ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
92, 8syl6bi 243 . . . . . . . . . . 11 (𝑐 = {𝑥, 𝑦} → (𝑐𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
109com12 32 . . . . . . . . . 10 (𝑐𝑃 → (𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉))))
1110rexlimiv 3056 . . . . . . . . 9 (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
1211com12 32 . . . . . . . 8 (𝑃 ⊆ (Pairs‘𝑉) → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
1312adantl 481 . . . . . . 7 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} → (𝑥𝑉𝑦𝑉)))
1413imp 444 . . . . . 6 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → (𝑥𝑉𝑦𝑉))
1514simpld 474 . . . . 5 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → 𝑥𝑉)
1614simprd 478 . . . . 5 (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → 𝑦𝑉)
171, 1, 15, 16opabex2 7271 . . . 4 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ V)
18 elopab 5012 . . . . . . 7 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}))
1911adantl 481 . . . . . . . . . . . 12 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥𝑉𝑦𝑉)))
2019adantld 482 . . . . . . . . . . 11 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑥𝑉𝑦𝑉)))
2120imp 444 . . . . . . . . . 10 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑥𝑉𝑦𝑉))
22 eleq1 2718 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝 ∈ (𝑉 × 𝑉) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
2322ad2antrr 762 . . . . . . . . . . 11 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉)))
24 opelxp 5180 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑉) ↔ (𝑥𝑉𝑦𝑉))
2523, 24syl6bb 276 . . . . . . . . . 10 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ (𝑥𝑉𝑦𝑉)))
2621, 25mpbird 247 . . . . . . . . 9 (((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → 𝑝 ∈ (𝑉 × 𝑉))
2726ex 449 . . . . . . . 8 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
2827exlimivv 1900 . . . . . . 7 (∃𝑥𝑦(𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
2918, 28sylbi 207 . . . . . 6 (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉)))
3029com12 32 . . . . 5 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑝 ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ (𝑉 × 𝑉)))
3130ssrdv 3642 . . . 4 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ⊆ (𝑉 × 𝑉))
3217, 31elpwd 4200 . . 3 ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
3332ex 449 . 2 (𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)))
34 fvprc 6223 . . . . 5 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
3534sseq2d 3666 . . . 4 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 ⊆ ∅))
36 ss0b 4006 . . . 4 (𝑃 ⊆ ∅ ↔ 𝑃 = ∅)
3735, 36syl6bb 276 . . 3 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 = ∅))
38 rex0 3971 . . . . . . 7 ¬ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦}
39 rexeq 3169 . . . . . . 7 (𝑃 = ∅ → (∃𝑐𝑃 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦}))
4038, 39mtbiri 316 . . . . . 6 (𝑃 = ∅ → ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
4140alrimivv 1896 . . . . 5 (𝑃 = ∅ → ∀𝑥𝑦 ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
42 opab0 5036 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} = ∅ ↔ ∀𝑥𝑦 ¬ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦})
4341, 42sylibr 224 . . . 4 (𝑃 = ∅ → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} = ∅)
44 0elpw 4864 . . . 4 ∅ ∈ 𝒫 (𝑉 × 𝑉)
4543, 44syl6eqel 2738 . . 3 (𝑃 = ∅ → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
4637, 45syl6bi 243 . 2 𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)))
4733, 46pm2.61i 176 1 (𝑃 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  wrex 2942  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191  {cpr 4212  cop 4216  {copab 4745   × cxp 5141  cfv 5926  Pairscspr 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-spr 42053
This theorem is referenced by:  sprsymrelfv  42069  sprsymrelf  42070
  Copyright terms: Public domain W3C validator