Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprssspr Structured version   Visualization version   GIF version

Theorem sprssspr 41502
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprssspr (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Distinct variable group:   𝑉,𝑎,𝑏,𝑝

Proof of Theorem sprssspr
StepHypRef Expression
1 sprval 41500 . . 3 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 r2ex 3059 . . . . . . 7 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}))
3 simpr 477 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏})
432eximi 1762 . . . . . . 7 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
52, 4sylbi 207 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
65ax-gen 1721 . . . . 5 𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
76a1i 11 . . . 4 (𝑉 ∈ V → ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
8 ss2ab 3668 . . . 4 ({𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
97, 8sylibr 224 . . 3 (𝑉 ∈ V → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
101, 9eqsstrd 3637 . 2 (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
11 fvprc 6183 . . 3 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
12 0ss 3970 . . . 4 ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
1312a1i 11 . . 3 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1411, 13eqsstrd 3637 . 2 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1510, 14pm2.61i 176 1 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1480   = wceq 1482  wex 1703  wcel 1989  {cab 2607  wrex 2912  Vcvv 3198  wss 3572  c0 3913  {cpr 4177  cfv 5886  Pairscspr 41498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-spr 41499
This theorem is referenced by:  spr0el  41503
  Copyright terms: Public domain W3C validator