Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprid Structured version   Visualization version   GIF version

Theorem sprid 42234
Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprid {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}

Proof of Theorem sprid
StepHypRef Expression
1 rexv 3360 . . 3 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏})
2 rexv 3360 . . . 4 (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏})
32exbii 1923 . . 3 (∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
41, 3bitri 264 . 2 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
54abbii 2877 1 {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wex 1853  {cab 2746  wrex 3051  Vcvv 3340  {cpr 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-rex 3056  df-v 3342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator