![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprbisymrel | Structured version Visualization version GIF version |
Description: There is a bijection between the subsets of the set of pairs over a fixed set 𝑉 and the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 23-Nov-2021.) |
Ref | Expression |
---|---|
sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Ref | Expression |
---|---|
sprbisymrel | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | . . . 4 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
2 | fvex 6363 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
3 | 2 | pwex 4997 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
4 | 1, 3 | eqeltri 2835 | . . 3 ⊢ 𝑃 ∈ V |
5 | mptexg 6649 | . . 3 ⊢ (𝑃 ∈ V → (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
6 | 4, 5 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
7 | sprsymrelf.r | . . 3 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
8 | eqid 2760 | . . 3 ⊢ (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
9 | 1, 7, 8 | sprsymrelf1o 42276 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝑃–1-1-onto→𝑅) |
10 | f1oeq1 6289 | . . 3 ⊢ (𝑓 = (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) → (𝑓:𝑃–1-1-onto→𝑅 ↔ (𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝑃–1-1-onto→𝑅)) | |
11 | 10 | spcegv 3434 | . 2 ⊢ ((𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V → ((𝑝 ∈ 𝑃 ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝑃–1-1-onto→𝑅 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅)) |
12 | 6, 9, 11 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 {crab 3054 Vcvv 3340 𝒫 cpw 4302 {cpr 4323 class class class wbr 4804 {copab 4864 ↦ cmpt 4881 × cxp 5264 –1-1-onto→wf1o 6048 ‘cfv 6049 Pairscspr 42255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-spr 42256 |
This theorem is referenced by: sprsymrelen 42278 |
Copyright terms: Public domain | W3C validator |