![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > splvalpfx | Structured version Visualization version GIF version |
Description: Value of the substring replacement operator. (Contributed by AV, 11-May-2020.) |
Ref | Expression |
---|---|
splvalpfx | ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | splval 13714 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) | |
2 | pfxval 41908 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℕ0) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) | |
3 | 2 | 3ad2antr1 1201 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) |
4 | 3 | eqcomd 2775 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 substr 〈0, 𝐹〉) = (𝑆 prefix 𝐹)) |
5 | 4 | oveq1d 6806 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → ((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) = ((𝑆 prefix 𝐹) ++ 𝑅)) |
6 | 5 | oveq1d 6806 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
7 | 1, 6 | eqtrd 2803 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1069 = wceq 1629 ∈ wcel 2143 〈cop 4319 〈cotp 4321 ‘cfv 6030 (class class class)co 6791 0cc0 10136 ℕ0cn0 11492 ♯chash 13324 ++ cconcat 13492 substr csubstr 13494 splice csplice 13495 prefix cpfx 41906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-sbc 3585 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-ot 4322 df-uni 4572 df-br 4784 df-opab 4844 df-mpt 4861 df-id 5156 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-1st 7313 df-2nd 7314 df-splice 13503 df-pfx 41907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |