![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spimv | Structured version Visualization version GIF version |
Description: A version of spim 2290 with a distinct variable requirement instead of a bound variable hypothesis. See also spimv1 2153 and spimvw 1973. See also spimvALT 2294. (Contributed by NM, 31-Jul-1993.) Removed dependency on ax-10 2059. (Revised by BJ, 29-Nov-2020.) |
Ref | Expression |
---|---|
spimv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2286 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | spimv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | eximii 1804 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) |
4 | 3 | 19.36iv 1914 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: spv 2296 axc16i 2353 reu6 3428 el 4877 aev-o 34535 axc11next 38924 |
Copyright terms: Public domain | W3C validator |