![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spimev | Structured version Visualization version GIF version |
Description: Distinct-variable version of spime 2292. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
spimev.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimev | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | spimev.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spime 2292 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: axsep 4813 dtru 4887 zfpair 4934 fvn0ssdmfun 6390 refimssco 38230 rlimdmafv 41578 elsprel 42050 |
Copyright terms: Public domain | W3C validator |