Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimed Structured version   Visualization version   GIF version

Theorem spimed 2291
 Description: Deduction version of spime 2292. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
Hypotheses
Ref Expression
spimed.1 (𝜒 → Ⅎ𝑥𝜑)
spimed.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimed (𝜒 → (𝜑 → ∃𝑥𝜓))

Proof of Theorem spimed
StepHypRef Expression
1 spimed.1 . . 3 (𝜒 → Ⅎ𝑥𝜑)
21nf5rd 2104 . 2 (𝜒 → (𝜑 → ∀𝑥𝜑))
3 ax6e 2286 . . . 4 𝑥 𝑥 = 𝑦
4 spimed.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4eximii 1804 . . 3 𝑥(𝜑𝜓)
6519.35i 1846 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
72, 6syl6 35 1 (𝜒 → (𝜑 → ∃𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1521  ∃wex 1744  Ⅎwnf 1748 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-nf 1750 This theorem is referenced by:  spime  2292  2ax6elem  2477
 Copyright terms: Public domain W3C validator