![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcimgft | Structured version Visualization version GIF version |
Description: A closed version of spcimgf 3437. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgft.1 | ⊢ Ⅎ𝑥𝜓 |
spcimgft.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
spcimgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3364 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | spcimgft.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 3360 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | exim 1909 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑 → 𝜓))) | |
5 | 3, 4 | syl5bi 232 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑 → 𝜓))) |
6 | spcimgft.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
7 | 6 | 19.36 2254 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
8 | 5, 7 | syl6ib 241 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓))) |
9 | 1, 8 | syl5 34 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1629 = wceq 1631 ∃wex 1852 Ⅎwnf 1856 ∈ wcel 2145 Ⅎwnfc 2900 Vcvv 3351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 |
This theorem is referenced by: spcgft 3436 spcimgf 3437 spcimdv 3441 ss2iundf 38477 spcdvw 42954 |
Copyright terms: Public domain | W3C validator |