![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spc3gv | Structured version Visualization version GIF version |
Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc3gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc3egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 307 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | spc3egv 3328 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ∃𝑥∃𝑦∃𝑧 ¬ 𝜑)) |
4 | exnal 1794 | . . . . . . 7 ⊢ (∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑧𝜑) | |
5 | 4 | exbii 1814 | . . . . . 6 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑦 ¬ ∀𝑧𝜑) |
6 | exnal 1794 | . . . . . 6 ⊢ (∃𝑦 ¬ ∀𝑧𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) | |
7 | 5, 6 | bitri 264 | . . . . 5 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) |
8 | 7 | exbii 1814 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑥 ¬ ∀𝑦∀𝑧𝜑) |
9 | exnal 1794 | . . . 4 ⊢ (∃𝑥 ¬ ∀𝑦∀𝑧𝜑 ↔ ¬ ∀𝑥∀𝑦∀𝑧𝜑) | |
10 | 8, 9 | bitr2i 265 | . . 3 ⊢ (¬ ∀𝑥∀𝑦∀𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ¬ 𝜑) |
11 | 3, 10 | syl6ibr 242 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦∀𝑧𝜑)) |
12 | 11 | con4d 114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ w3a 1054 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: funopg 5960 pslem 17253 dirtr 17283 mclsax 31592 fununiq 31793 |
Copyright terms: Public domain | W3C validator |