MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc2ev Structured version   Visualization version   GIF version

Theorem spc2ev 3332
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1 𝐴 ∈ V
spc2ev.2 𝐵 ∈ V
spc2ev.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2ev (𝜓 → ∃𝑥𝑦𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2 𝐴 ∈ V
2 spc2ev.2 . 2 𝐵 ∈ V
3 spc2ev.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
43spc2egv 3326 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝜓 → ∃𝑥𝑦𝜑))
51, 2, 4mp2an 708 1 (𝜓 → ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  Vcvv 3231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233
This theorem is referenced by:  relop  5305  endisj  8088  dcomex  9307  axcnre  10023  hashle2pr  13297  wlk2f  26581  uhgr3cyclex  27160  qqhval2  30154  itg2addnclem3  33593  funop1  41625
  Copyright terms: Public domain W3C validator