HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 28739
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴C
spanunsn.2 𝐵 ∈ ℋ
Assertion
Ref Expression
spanunsni (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))

Proof of Theorem spanunsni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴C
21chshii 28385 . . . . . 6 𝐴S
3 spanunsn.2 . . . . . . 7 𝐵 ∈ ℋ
4 snssi 4476 . . . . . . 7 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
5 spancl 28496 . . . . . . 7 ({𝐵} ⊆ ℋ → (span‘{𝐵}) ∈ S )
63, 4, 5mp2b 10 . . . . . 6 (span‘{𝐵}) ∈ S
72, 6shseli 28476 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧))
83elspansni 28718 . . . . . . . 8 (𝑧 ∈ (span‘{𝐵}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵))
91, 3pjclii 28581 . . . . . . . . . . . . . . . 16 ((proj𝐴)‘𝐵) ∈ 𝐴
10 shmulcl 28376 . . . . . . . . . . . . . . . 16 ((𝐴S𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
112, 9, 10mp3an13 1556 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
12 shaddcl 28375 . . . . . . . . . . . . . . 15 ((𝐴S𝑦𝐴 ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
1311, 12syl3an3 1168 . . . . . . . . . . . . . 14 ((𝐴S𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
142, 13mp3an1 1552 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
151choccli 28467 . . . . . . . . . . . . . . . 16 (⊥‘𝐴) ∈ C
1615, 3pjhclii 28582 . . . . . . . . . . . . . . 15 ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ
17 spansnmul 28724 . . . . . . . . . . . . . . 15 ((((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1816, 17mpan 708 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1918adantl 473 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
201, 3pjpji 28584 . . . . . . . . . . . . . . . . . 18 𝐵 = (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))
2120oveq2i 6816 . . . . . . . . . . . . . . . . 17 (𝑤 · 𝐵) = (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵)))
221, 3pjhclii 28582 . . . . . . . . . . . . . . . . . 18 ((proj𝐴)‘𝐵) ∈ ℋ
23 ax-hvdistr1 28166 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2422, 16, 23mp3an23 1557 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2521, 24syl5eq 2798 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2625adantl 473 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2726oveq2d 6821 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
281cheli 28390 . . . . . . . . . . . . . . 15 (𝑦𝐴𝑦 ∈ ℋ)
29 hvmulcl 28171 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
3022, 29mpan2 709 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
31 hvmulcl 28171 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3216, 31mpan2 709 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3330, 32jca 555 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
34 ax-hvass 28160 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
35343expb 1113 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3628, 33, 35syl2an 495 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3727, 36eqtr4d 2789 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
38 rspceov 6847 . . . . . . . . . . . . 13 (((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴 ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∧ (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
3914, 19, 37, 38syl3anc 1473 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
40 snssi 4476 . . . . . . . . . . . . . 14 (((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ)
41 spancl 28496 . . . . . . . . . . . . . 14 ({((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ → (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S
432, 42shseli 28476 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
4439, 43sylibr 224 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
45 oveq2 6813 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · 𝐵) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · 𝐵)))
4645eqeq2d 2762 . . . . . . . . . . . 12 (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · 𝐵))))
4746biimpa 502 . . . . . . . . . . 11 ((𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · 𝐵)))
48 eleq1 2819 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · 𝐵)) → (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
4948biimparc 505 . . . . . . . . . . 11 (((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ∧ 𝑥 = (𝑦 + (𝑤 · 𝐵))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5044, 47, 49syl2an 495 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5150exp43 641 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))))
5251rexlimdv 3160 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
538, 52syl5bi 232 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐵}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
5453rexlimdv 3160 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
5554rexlimiv 3157 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
567, 55sylbi 207 . . . 4 (𝑥 ∈ (𝐴 + (span‘{𝐵})) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
572, 42shseli 28476 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧))
5816elspansni 28718 . . . . . . . 8 (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))
59 negcl 10465 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → -𝑤 ∈ ℂ)
60 shmulcl 28376 . . . . . . . . . . . . . . . . . 18 ((𝐴S ∧ -𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
612, 9, 60mp3an13 1556 . . . . . . . . . . . . . . . . 17 (-𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
63 shaddcl 28375 . . . . . . . . . . . . . . . 16 ((𝐴S ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6462, 63syl3an2 1167 . . . . . . . . . . . . . . 15 ((𝐴S𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
652, 64mp3an1 1552 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6665ancoms 468 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
67 spansnmul 28724 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
683, 67mpan 708 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
6968adantl 473 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
70 hvm1neg 28190 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7122, 70mpan2 709 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7271oveq2d 6821 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))))
73 hvnegid 28185 . . . . . . . . . . . . . . . . . . 19 ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
75 hvmulcl 28171 . . . . . . . . . . . . . . . . . . . 20 ((-𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
7659, 22, 75sylancl 697 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
77 ax-hvcom 28159 . . . . . . . . . . . . . . . . . . 19 (((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7830, 76, 77syl2anc 696 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7972, 74, 783eqtr3d 2794 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8079adantl 473 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8180oveq1d 6820 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
82 hvaddcl 28170 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
8328, 32, 82syl2an 495 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
84 hvaddid2 28181 . . . . . . . . . . . . . . . 16 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8676, 30jca 555 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8786adantl 473 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8828, 32anim12i 591 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
89 hvadd4 28194 . . . . . . . . . . . . . . . 16 ((((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) ∧ (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9087, 88, 89syl2anc 696 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9181, 85, 903eqtr3d 2794 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9226oveq2d 6821 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9391, 92eqtr4d 2789 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)))
94 rspceov 6847 . . . . . . . . . . . . 13 ((((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴 ∧ (𝑤 · 𝐵) ∈ (span‘{𝐵}) ∧ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵))) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9566, 69, 93, 94syl3anc 1473 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
962, 6shseli 28476 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9795, 96sylibr 224 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})))
98 oveq2 6813 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
9998eqeq2d 2762 . . . . . . . . . . . 12 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
10099biimpa 502 . . . . . . . . . . 11 ((𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
101 eleq1 2819 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) → (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵}))))
102101biimparc 505 . . . . . . . . . . 11 (((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ∧ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10397, 100, 102syl2an 495 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
104103exp43 641 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))))
105104rexlimdv 3160 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
10658, 105syl5bi 232 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
107106rexlimdv 3160 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))
108107rexlimiv 3157 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10957, 108sylbi 207 . . . 4 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
11056, 109impbii 199 . . 3 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
111110eqriv 2749 . 2 (𝐴 + (span‘{𝐵})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1121chssii 28389 . . . 4 𝐴 ⊆ ℋ
1133, 4ax-mp 5 . . . 4 {𝐵} ⊆ ℋ
114112, 113spanuni 28704 . . 3 (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) + (span‘{𝐵}))
115 spanid 28507 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
1162, 115ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
117116oveq1i 6815 . . 3 ((span‘𝐴) + (span‘{𝐵})) = (𝐴 + (span‘{𝐵}))
118114, 117eqtri 2774 . 2 (span‘(𝐴 ∪ {𝐵})) = (𝐴 + (span‘{𝐵}))
11916, 40ax-mp 5 . . . 4 {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ
120112, 119spanuni 28704 . . 3 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
121116oveq1i 6815 . . 3 ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
122120, 121eqtri 2774 . 2 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
123111, 118, 1223eqtr4i 2784 1 (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wrex 3043  cun 3705  wss 3707  {csn 4313  cfv 6041  (class class class)co 6805  cc 10118  1c1 10121  -cneg 10451  chil 28077   + cva 28078   · csm 28079  0c0v 28082   S csh 28086   C cch 28087  cort 28088   + cph 28089  spancspn 28090  projcpjh 28095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cc 9441  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200  ax-hilex 28157  ax-hfvadd 28158  ax-hvcom 28159  ax-hvass 28160  ax-hv0cl 28161  ax-hvaddid 28162  ax-hfvmul 28163  ax-hvmulid 28164  ax-hvmulass 28165  ax-hvdistr1 28166  ax-hvdistr2 28167  ax-hvmul0 28168  ax-hfi 28237  ax-his1 28240  ax-his2 28241  ax-his3 28242  ax-his4 28243  ax-hcompl 28360
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-omul 7726  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-rlim 14411  df-sum 14608  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-cn 21225  df-cnp 21226  df-lm 21227  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cfil 23245  df-cau 23246  df-cmet 23247  df-grpo 27648  df-gid 27649  df-ginv 27650  df-gdiv 27651  df-ablo 27700  df-vc 27715  df-nv 27748  df-va 27751  df-ba 27752  df-sm 27753  df-0v 27754  df-vs 27755  df-nmcv 27756  df-ims 27757  df-dip 27857  df-ssp 27878  df-ph 27969  df-cbn 28020  df-hnorm 28126  df-hba 28127  df-hvsub 28129  df-hlim 28130  df-hcau 28131  df-sh 28365  df-ch 28379  df-oc 28410  df-ch0 28411  df-shs 28468  df-span 28469  df-pjh 28555
This theorem is referenced by:  spansnji  28806
  Copyright terms: Public domain W3C validator