Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanun Structured version   Visualization version   GIF version

Theorem spanun 28735
 Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
spanun ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)))

Proof of Theorem spanun
StepHypRef Expression
1 uneq1 3904 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵))
21fveq2d 6358 . . 3 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘(𝐴𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)))
3 fveq2 6354 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (span‘𝐴) = (span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)))
43oveq1d 6830 . . 3 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘𝐴) + (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)))
52, 4eqeq12d 2776 . 2 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ((span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵))))
6 uneq2 3905 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵) = (if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
76fveq2d 6358 . . 3 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))))
8 fveq2 6354 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (span‘𝐵) = (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
98oveq2d 6831 . . 3 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ))))
107, 9eqeq12d 2776 . 2 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ((span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ 𝐵)) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘𝐵)) ↔ (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))))
11 sseq1 3768 . . . 4 (𝐴 = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → (𝐴 ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ))
12 sseq1 3768 . . . 4 ( ℋ = if(𝐴 ⊆ ℋ, 𝐴, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ))
13 ssid 3766 . . . 4 ℋ ⊆ ℋ
1411, 12, 13elimhyp 4291 . . 3 if(𝐴 ⊆ ℋ, 𝐴, ℋ) ⊆ ℋ
15 sseq1 3768 . . . 4 (𝐵 = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → (𝐵 ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ))
16 sseq1 3768 . . . 4 ( ℋ = if(𝐵 ⊆ ℋ, 𝐵, ℋ) → ( ℋ ⊆ ℋ ↔ if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ))
1715, 16, 13elimhyp 4291 . . 3 if(𝐵 ⊆ ℋ, 𝐵, ℋ) ⊆ ℋ
1814, 17spanuni 28734 . 2 (span‘(if(𝐴 ⊆ ℋ, 𝐴, ℋ) ∪ if(𝐵 ⊆ ℋ, 𝐵, ℋ))) = ((span‘if(𝐴 ⊆ ℋ, 𝐴, ℋ)) + (span‘if(𝐵 ⊆ ℋ, 𝐵, ℋ)))
195, 10, 18dedth2h 4285 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∪ cun 3714   ⊆ wss 3716  ifcif 4231  ‘cfv 6050  (class class class)co 6815   ℋchil 28107   +ℋ cph 28119  spancspn 28120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229  ax-hilex 28187  ax-hfvadd 28188  ax-hvcom 28189  ax-hvass 28190  ax-hv0cl 28191  ax-hvaddid 28192  ax-hfvmul 28193  ax-hvmulid 28194  ax-hvmulass 28195  ax-hvdistr1 28196  ax-hvdistr2 28197  ax-hvmul0 28198  ax-hfi 28267  ax-his1 28270  ax-his2 28271  ax-his3 28272  ax-his4 28273 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-icc 12396  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-topgen 16327  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-top 20922  df-topon 20939  df-bases 20973  df-lm 21256  df-haus 21342  df-grpo 27678  df-gid 27679  df-ginv 27680  df-gdiv 27681  df-ablo 27730  df-vc 27745  df-nv 27778  df-va 27781  df-ba 27782  df-sm 27783  df-0v 27784  df-vs 27785  df-nmcv 27786  df-ims 27787  df-hnorm 28156  df-hvsub 28159  df-hlim 28160  df-sh 28395  df-ch 28409  df-ch0 28441  df-shs 28498  df-span 28499 This theorem is referenced by:  spanpr  28770  superpos  29544
 Copyright terms: Public domain W3C validator