HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanss Structured version   Visualization version   GIF version

Theorem spanss 28538
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spanss ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) ⊆ (span‘𝐵))

Proof of Theorem spanss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 3752 . . . . . 6 (𝐴𝐵 → (𝐵𝑥𝐴𝑥))
21ralrimivw 3106 . . . . 5 (𝐴𝐵 → ∀𝑥S (𝐵𝑥𝐴𝑥))
3 ss2rab 3820 . . . . 5 ({𝑥S𝐵𝑥} ⊆ {𝑥S𝐴𝑥} ↔ ∀𝑥S (𝐵𝑥𝐴𝑥))
42, 3sylibr 224 . . . 4 (𝐴𝐵 → {𝑥S𝐵𝑥} ⊆ {𝑥S𝐴𝑥})
5 intss 4651 . . . 4 ({𝑥S𝐵𝑥} ⊆ {𝑥S𝐴𝑥} → {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
64, 5syl 17 . . 3 (𝐴𝐵 {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
76adantl 473 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → {𝑥S𝐴𝑥} ⊆ {𝑥S𝐵𝑥})
8 sstr 3753 . . . 4 ((𝐴𝐵𝐵 ⊆ ℋ) → 𝐴 ⊆ ℋ)
98ancoms 468 . . 3 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → 𝐴 ⊆ ℋ)
10 spanval 28523 . . 3 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
119, 10syl 17 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) = {𝑥S𝐴𝑥})
12 spanval 28523 . . 3 (𝐵 ⊆ ℋ → (span‘𝐵) = {𝑥S𝐵𝑥})
1312adantr 472 . 2 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐵) = {𝑥S𝐵𝑥})
147, 11, 133sstr4d 3790 1 ((𝐵 ⊆ ℋ ∧ 𝐴𝐵) → (span‘𝐴) ⊆ (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wral 3051  {crab 3055  wss 3716   cint 4628  cfv 6050  chil 28107   S csh 28116  spancspn 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-i2m1 10217  ax-1ne0 10218  ax-rrecex 10221  ax-cnre 10222  ax-hilex 28187  ax-hfvadd 28188  ax-hv0cl 28191  ax-hfvmul 28193
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-map 8028  df-nn 11234  df-hlim 28160  df-sh 28395  df-ch 28409  df-span 28499
This theorem is referenced by:  spanssoc  28539  span0  28732  spanuni  28734  spansnpji  28768  shatomistici  29551
  Copyright terms: Public domain W3C validator