![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > spansnji | Structured version Visualization version GIF version |
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spansnj.1 | ⊢ 𝐴 ∈ Cℋ |
spansnj.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
spansnji | ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnj.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 28385 | . . 3 ⊢ 𝐴 ∈ Sℋ |
3 | spansnj.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
4 | 3 | spansnchi 28722 | . . . 4 ⊢ (span‘{𝐵}) ∈ Cℋ |
5 | 4 | chshii 28385 | . . 3 ⊢ (span‘{𝐵}) ∈ Sℋ |
6 | 2, 5 | shjshsi 28652 | . 2 ⊢ (𝐴 ∨ℋ (span‘{𝐵})) = (⊥‘(⊥‘(𝐴 +ℋ (span‘{𝐵})))) |
7 | 1 | chssii 28389 | . . . . . . . 8 ⊢ 𝐴 ⊆ ℋ |
8 | 1 | choccli 28467 | . . . . . . . . . 10 ⊢ (⊥‘𝐴) ∈ Cℋ |
9 | 8, 3 | pjhclii 28582 | . . . . . . . . 9 ⊢ ((projℎ‘(⊥‘𝐴))‘𝐵) ∈ ℋ |
10 | snssi 4476 | . . . . . . . . 9 ⊢ (((projℎ‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((projℎ‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 ⊢ {((projℎ‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ |
12 | 7, 11 | spanuni 28704 | . . . . . . 7 ⊢ (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
13 | spanid 28507 | . . . . . . . . 9 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
14 | 2, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (span‘𝐴) = 𝐴 |
15 | 14 | oveq1i 6815 | . . . . . . 7 ⊢ ((span‘𝐴) +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
16 | 7, 3 | spansnpji 28738 | . . . . . . . 8 ⊢ 𝐴 ⊆ (⊥‘(span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
17 | 9 | spansnchi 28722 | . . . . . . . . 9 ⊢ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)}) ∈ Cℋ |
18 | 1, 17 | osumi 28802 | . . . . . . . 8 ⊢ (𝐴 ⊆ (⊥‘(span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) → (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)}))) |
19 | 16, 18 | ax-mp 5 | . . . . . . 7 ⊢ (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
20 | 12, 15, 19 | 3eqtrri 2779 | . . . . . 6 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) |
21 | 1, 3 | spanunsni 28739 | . . . . . 6 ⊢ (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) |
22 | 20, 21 | eqtr4i 2777 | . . . . 5 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (span‘(𝐴 ∪ {𝐵})) |
23 | snssi 4476 | . . . . . . 7 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
24 | 3, 23 | ax-mp 5 | . . . . . 6 ⊢ {𝐵} ⊆ ℋ |
25 | 7, 24 | spanuni 28704 | . . . . 5 ⊢ (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) +ℋ (span‘{𝐵})) |
26 | 14 | oveq1i 6815 | . . . . 5 ⊢ ((span‘𝐴) +ℋ (span‘{𝐵})) = (𝐴 +ℋ (span‘{𝐵})) |
27 | 22, 25, 26 | 3eqtrri 2779 | . . . 4 ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
28 | 1, 17 | chjcli 28617 | . . . 4 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) ∈ Cℋ |
29 | 27, 28 | eqeltri 2827 | . . 3 ⊢ (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ |
30 | 29 | ococi 28565 | . 2 ⊢ (⊥‘(⊥‘(𝐴 +ℋ (span‘{𝐵})))) = (𝐴 +ℋ (span‘{𝐵})) |
31 | 6, 30 | eqtr2i 2775 | 1 ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∈ wcel 2131 ∪ cun 3705 ⊆ wss 3707 {csn 4313 ‘cfv 6041 (class class class)co 6805 ℋchil 28077 Sℋ csh 28086 Cℋ cch 28087 ⊥cort 28088 +ℋ cph 28089 spancspn 28090 ∨ℋ chj 28091 projℎcpjh 28095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cc 9441 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 ax-hilex 28157 ax-hfvadd 28158 ax-hvcom 28159 ax-hvass 28160 ax-hv0cl 28161 ax-hvaddid 28162 ax-hfvmul 28163 ax-hvmulid 28164 ax-hvmulass 28165 ax-hvdistr1 28166 ax-hvdistr2 28167 ax-hvmul0 28168 ax-hfi 28237 ax-his1 28240 ax-his2 28241 ax-his3 28242 ax-his4 28243 ax-hcompl 28360 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-supp 7456 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-omul 7726 df-er 7903 df-map 8017 df-pm 8018 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8433 df-fi 8474 df-sup 8505 df-inf 8506 df-oi 8572 df-card 8947 df-acn 8950 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-z 11562 df-dec 11678 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-ioo 12364 df-ico 12366 df-icc 12367 df-fz 12512 df-fzo 12652 df-fl 12779 df-seq 12988 df-exp 13047 df-hash 13304 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-clim 14410 df-rlim 14411 df-sum 14608 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-sca 16151 df-vsca 16152 df-ip 16153 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-hom 16160 df-cco 16161 df-rest 16277 df-topn 16278 df-0g 16296 df-gsum 16297 df-topgen 16298 df-pt 16299 df-prds 16302 df-xrs 16356 df-qtop 16361 df-imas 16362 df-xps 16364 df-mre 16440 df-mrc 16441 df-acs 16443 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-submnd 17529 df-mulg 17734 df-cntz 17942 df-cmn 18387 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-fbas 19937 df-fg 19938 df-cnfld 19941 df-top 20893 df-topon 20910 df-topsp 20931 df-bases 20944 df-cld 21017 df-ntr 21018 df-cls 21019 df-nei 21096 df-cn 21225 df-cnp 21226 df-lm 21227 df-haus 21313 df-tx 21559 df-hmeo 21752 df-fil 21843 df-fm 21935 df-flim 21936 df-flf 21937 df-xms 22318 df-ms 22319 df-tms 22320 df-cfil 23245 df-cau 23246 df-cmet 23247 df-grpo 27648 df-gid 27649 df-ginv 27650 df-gdiv 27651 df-ablo 27700 df-vc 27715 df-nv 27748 df-va 27751 df-ba 27752 df-sm 27753 df-0v 27754 df-vs 27755 df-nmcv 27756 df-ims 27757 df-dip 27857 df-ssp 27878 df-ph 27969 df-cbn 28020 df-hnorm 28126 df-hba 28127 df-hvsub 28129 df-hlim 28130 df-hcau 28131 df-sh 28365 df-ch 28379 df-oc 28410 df-ch0 28411 df-shs 28468 df-span 28469 df-chj 28470 df-pjh 28555 |
This theorem is referenced by: spansnj 28807 spansncvi 28812 |
Copyright terms: Public domain | W3C validator |