Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Visualization version   GIF version

Theorem spansncvi 28639
 Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1 𝐴C
spansncv.2 𝐵C
spansncv.3 𝐶 ∈ ℋ
Assertion
Ref Expression
spansncvi ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))

Proof of Theorem spansncvi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 ⊆ (𝐴 (span‘{𝐶})))
2 pssss 3735 . . . 4 (𝐴𝐵𝐴𝐵)
32adantr 480 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐴𝐵)
4 pssnel 4072 . . . . . . 7 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 ssel2 3631 . . . . . . . . . . . 12 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 (span‘{𝐶})))
6 spansncv.1 . . . . . . . . . . . . . . . 16 𝐴C
7 spansncv.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℋ
86, 7spansnji 28633 . . . . . . . . . . . . . . 15 (𝐴 + (span‘{𝐶})) = (𝐴 (span‘{𝐶}))
98eleq2i 2722 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ 𝑥 ∈ (𝐴 (span‘{𝐶})))
107spansnchi 28549 . . . . . . . . . . . . . . 15 (span‘{𝐶}) ∈ C
116, 10chseli 28446 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
129, 11bitr3i 266 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
13 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐵 ↔ (𝑦 + 𝑧) ∈ 𝐵))
1413biimpac 502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐵𝑥 = (𝑦 + 𝑧)) → (𝑦 + 𝑧) ∈ 𝐵)
152sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝐵𝑦𝐴) → 𝑦𝐵)
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐵C
1716chshii 28212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵S
18 shsubcl 28205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵S ∧ (𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
1917, 18mp3an1 1451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2014, 15, 19syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐵𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑦𝐴)) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2120exp43 639 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑦𝐴 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2221com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑥𝐵 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2322imp45 622 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
246cheli 28217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐴𝑦 ∈ ℋ)
2510cheli 28217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (span‘{𝐶}) → 𝑧 ∈ ℋ)
26 hvpncan2 28025 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2724, 25, 26syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2827eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (((𝑦 + 𝑧) − 𝑦) ∈ 𝐵𝑧𝐵))
2923, 28syl5ib 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → 𝑧𝐵))
3029imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ (𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3130anandis 890 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ (𝑧 ∈ (span‘{𝐶}) ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3231exp45 641 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → 𝑧𝐵))))
3332imp41 618 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑥𝐵)) → 𝑧𝐵)
3433adantrr 753 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → 𝑧𝐵)
35 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (𝑦 + 𝑧) = (𝑦 + 0))
36 ax-hvaddid 27989 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → (𝑦 + 0) = 𝑦)
3835, 37sylan9eqr 2707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧 = 0) → (𝑦 + 𝑧) = 𝑦)
3938eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = 𝑦))
40 eleq1a 2725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = 𝑦𝑥𝐴))
4239, 41sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
4342impancom 455 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (𝑧 = 0𝑥𝐴))
4443necon3bd 2837 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (¬ 𝑥𝐴𝑧 ≠ 0))
4544imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → 𝑧 ≠ 0)
46 spansnss 28558 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵S𝑧𝐵) → (span‘{𝑧}) ⊆ 𝐵)
4717, 46mpan 706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐵 → (span‘{𝑧}) ⊆ 𝐵)
48 spansneleq 28557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
497, 48mpan 706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ≠ 0 → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
5049imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (span‘{𝑧}) = (span‘{𝐶}))
5150sseq1d 3665 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → ((span‘{𝑧}) ⊆ 𝐵 ↔ (span‘{𝐶}) ⊆ 𝐵))
5247, 51syl5ib 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5352ancoms 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (span‘{𝐶}) ∧ 𝑧 ≠ 0) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5445, 53sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (span‘{𝐶}) ∧ ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5554exp44 640 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (span‘{𝐶}) → (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5655com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5756imp41 618 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5857adantrl 752 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5934, 58mpd 15 . . . . . . . . . . . . . . 15 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (span‘{𝐶}) ⊆ 𝐵)
6059exp43 639 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))))
6160rexlimivv 3065 . . . . . . . . . . . . 13 (∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6212, 61sylbi 207 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 (span‘{𝐶})) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
635, 62syl 17 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6463imp 444 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) ∧ (𝐴𝐵𝑥𝐵)) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6564anandirs 891 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6665expimpd 628 . . . . . . . 8 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
6766exlimdv 1901 . . . . . . 7 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
684, 67syl5 34 . . . . . 6 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
6968ex 449 . . . . 5 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵)))
7069pm2.43d 53 . . . 4 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
7170impcom 445 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (span‘{𝐶}) ⊆ 𝐵)
726, 10, 16chlubii 28459 . . 3 ((𝐴𝐵 ∧ (span‘{𝐶}) ⊆ 𝐵) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
733, 71, 72syl2anc 694 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
741, 73eqssd 3653 1 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942   ⊆ wss 3607   ⊊ wpss 3608  {csn 4210  ‘cfv 5926  (class class class)co 6690   ℋchil 27904   +ℎ cva 27905  0ℎc0v 27909   −ℎ cmv 27910   Sℋ csh 27913   Cℋ cch 27914   +ℋ cph 27916  spancspn 27917   ∨ℋ chj 27918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-span 28296  df-chj 28297  df-pjh 28382 This theorem is referenced by:  spansncv  28640
 Copyright terms: Public domain W3C validator