HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanid Structured version   Visualization version   GIF version

Theorem spanid 28540
Description: A subspace of Hilbert space is its own span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spanid (𝐴S → (span‘𝐴) = 𝐴)

Proof of Theorem spanid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 shss 28401 . . 3 (𝐴S𝐴 ⊆ ℋ)
2 spanval 28526 . . 3 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
31, 2syl 17 . 2 (𝐴S → (span‘𝐴) = {𝑥S𝐴𝑥})
4 intmin 4629 . 2 (𝐴S {𝑥S𝐴𝑥} = 𝐴)
53, 4eqtrd 2804 1 (𝐴S → (span‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  {crab 3064  wss 3721   cint 4609  cfv 6031  chil 28110   S csh 28119  spancspn 28123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-i2m1 10205  ax-1ne0 10206  ax-rrecex 10209  ax-cnre 10210  ax-hilex 28190  ax-hfvadd 28191  ax-hv0cl 28194  ax-hfvmul 28196
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-map 8010  df-nn 11222  df-hlim 28163  df-sh 28398  df-ch 28412  df-span 28502
This theorem is referenced by:  spanssoc  28542  shs0i  28642  spansn0  28734  span0  28735  spanuni  28737  spansnpji  28771  spanunsni  28772  spansnji  28839  shatomistici  29554
  Copyright terms: Public domain W3C validator