Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sotrine Structured version   Visualization version   GIF version

Theorem sotrine 31965
 Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sotrine ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotrine
StepHypRef Expression
1 sotrieq 5214 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
21bicomd 213 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) ↔ 𝐵 = 𝐶))
32necon1abid 2970 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804   Or wor 5186 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-po 5187  df-so 5188 This theorem is referenced by:  nosepne  32137  nosepdm  32140  slttrine  32182
 Copyright terms: Public domain W3C validator