Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotri Structured version   Visualization version   GIF version

Theorem sotri 5558
 Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5202 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
32simpld 474 . . 3 (𝐴𝑅𝐵𝐴𝑆)
41brel 5202 . . 3 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
53, 4anim12i 589 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
6 soi.1 . . . 4 𝑅 Or 𝑆
7 sotr 5086 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
86, 7mpan 706 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
983expb 1285 . 2 ((𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
105, 9mpcom 38 1 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685   Or wor 5063   × cxp 5141 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-po 5064  df-so 5065  df-xp 5149 This theorem is referenced by:  son2lpi  5559  sotri2  5560  sotri3  5561  ltsonq  9829  ltbtwnnq  9838  nqpr  9874  prlem934  9893  ltexprlem4  9899  reclem2pr  9908  reclem4pr  9910  ltsosr  9953  addgt0sr  9963  supsrlem  9970  axpre-lttrn  10025
 Copyright terms: Public domain W3C validator