Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr2 Structured version   Visualization version   GIF version

Theorem sotr2 5200
 Description: A transitivity relation. (Read 𝐵 ≤ 𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
sotr2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr2
StepHypRef Expression
1 sotric 5197 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
21ancom2s 629 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
323adantr3 1176 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
43con2bid 343 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵))
5 breq1 4790 . . . . . 6 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
65biimpd 219 . . . . 5 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
76a1i 11 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
8 sotr 5193 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
98expd 400 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
107, 9jaod 848 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) → (𝐶𝑅𝐷𝐵𝑅𝐷)))
114, 10sylbird 250 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (¬ 𝐶𝑅𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
1211impd 396 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 836   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   class class class wbr 4787   Or wor 5170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-po 5171  df-so 5172 This theorem is referenced by:  erdszelem8  31518  nosupbnd1  32197  slelttr  32219
 Copyright terms: Public domain W3C validator