![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sossfld | Structured version Visualization version GIF version |
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
sossfld | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4350 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | sotrieq 5091 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥))) | |
3 | 2 | necon2abid 2865 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
4 | 3 | anass1rs 866 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
5 | breldmg 5362 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅) | |
6 | 5 | 3expia 1286 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
7 | 6 | ancoms 468 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
8 | brelrng 5387 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅) | |
9 | 8 | 3expia 1286 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝑥 → 𝑥 ∈ ran 𝑅)) |
10 | 7, 9 | orim12d 901 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅))) |
11 | elun 3786 | . . . . . . 7 ⊢ (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅)) | |
12 | 10, 11 | syl6ibr 242 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
13 | 12 | adantll 750 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
14 | 4, 13 | sylbird 250 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ 𝐵 → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | expimpd 628 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 1, 15 | syl5bi 232 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | 16 | ssrdv 3642 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 ∖ cdif 3604 ∪ cun 3605 ⊆ wss 3607 {csn 4210 class class class wbr 4685 Or wor 5063 dom cdm 5143 ran crn 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-po 5064 df-so 5065 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: sofld 5616 soex 7151 |
Copyright terms: Public domain | W3C validator |