![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soss | Structured version Visualization version GIF version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 5066 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
2 | ssel 3630 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | ssel 3630 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | anim12d 585 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
5 | 4 | imim1d 82 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
6 | 5 | 2alimdv 1887 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
7 | r2al 2968 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
8 | r2al 2968 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
9 | 6, 7, 8 | 3imtr4g 285 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
10 | 1, 9 | anim12d 585 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)))) |
11 | df-so 5065 | . 2 ⊢ (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
12 | df-so 5065 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
13 | 10, 11, 12 | 3imtr4g 285 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∨ w3o 1053 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 class class class wbr 4685 Po wpo 5062 Or wor 5063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-in 3614 df-ss 3621 df-po 5064 df-so 5065 |
This theorem is referenced by: soeq2 5084 wess 5130 wereu 5139 wereu2 5140 ordunifi 8251 fisup2g 8415 fisupcl 8416 fiinf2g 8447 ordtypelem8 8471 wemapso2lem 8498 iunfictbso 8975 fin1a2lem10 9269 fin1a2lem11 9270 zornn0g 9365 ltsopi 9748 npomex 9856 fimaxre 11006 suprfinzcl 11530 isercolllem1 14439 summolem2 14491 zsum 14493 prodmolem2 14709 zprod 14711 gsumval3 18354 iccpnfhmeo 22791 xrhmeo 22792 dvgt0lem2 23811 dgrval 24029 dgrcl 24034 dgrub 24035 dgrlb 24037 aannenlem3 24130 logccv 24454 xrge0infssd 29654 infxrge0lb 29657 infxrge0glb 29658 infxrge0gelb 29659 ssnnssfz 29677 xrge0iifiso 30109 omsfval 30484 omsf 30486 oms0 30487 omssubaddlem 30489 omssubadd 30490 oddpwdc 30544 erdszelem4 31302 erdszelem8 31306 erdsze2lem1 31311 erdsze2lem2 31312 supfz 31739 inffz 31740 inffzOLD 31741 nomaxmo 31972 fin2so 33526 rencldnfilem 37701 fzisoeu 39828 fourierdlem36 40678 ssnn0ssfz 42452 |
Copyright terms: Public domain | W3C validator |