Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssuni Structured version   Visualization version   GIF version

Theorem sorpssuni 7111
 Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssuni ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
Distinct variable group:   𝑢,𝑌,𝑣

Proof of Theorem sorpssuni
StepHypRef Expression
1 sorpssi 7108 . . . . . . . . . 10 (( [] Or 𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝑢𝑣𝑣𝑢))
21anassrs 683 . . . . . . . . 9 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (𝑢𝑣𝑣𝑢))
3 sspss 3848 . . . . . . . . . . 11 (𝑢𝑣 ↔ (𝑢𝑣𝑢 = 𝑣))
4 orel1 396 . . . . . . . . . . . 12 𝑢𝑣 → ((𝑢𝑣𝑢 = 𝑣) → 𝑢 = 𝑣))
5 eqimss2 3799 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑣𝑢)
64, 5syl6com 37 . . . . . . . . . . 11 ((𝑢𝑣𝑢 = 𝑣) → (¬ 𝑢𝑣𝑣𝑢))
73, 6sylbi 207 . . . . . . . . . 10 (𝑢𝑣 → (¬ 𝑢𝑣𝑣𝑢))
8 ax-1 6 . . . . . . . . . 10 (𝑣𝑢 → (¬ 𝑢𝑣𝑣𝑢))
97, 8jaoi 393 . . . . . . . . 9 ((𝑢𝑣𝑣𝑢) → (¬ 𝑢𝑣𝑣𝑢))
102, 9syl 17 . . . . . . . 8 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (¬ 𝑢𝑣𝑣𝑢))
1110ralimdva 3100 . . . . . . 7 (( [] Or 𝑌𝑢𝑌) → (∀𝑣𝑌 ¬ 𝑢𝑣 → ∀𝑣𝑌 𝑣𝑢))
12113impia 1110 . . . . . 6 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → ∀𝑣𝑌 𝑣𝑢)
13 unissb 4621 . . . . . 6 ( 𝑌𝑢 ↔ ∀𝑣𝑌 𝑣𝑢)
1412, 13sylibr 224 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌𝑢)
15 elssuni 4619 . . . . . 6 (𝑢𝑌𝑢 𝑌)
16153ad2ant2 1129 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑢 𝑌)
1714, 16eqssd 3761 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌 = 𝑢)
18 simp2 1132 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑢𝑌)
1917, 18eqeltrd 2839 . . 3 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌𝑌)
2019rexlimdv3a 3171 . 2 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
21 elssuni 4619 . . . . 5 (𝑣𝑌𝑣 𝑌)
22 ssnpss 3852 . . . . 5 (𝑣 𝑌 → ¬ 𝑌𝑣)
2321, 22syl 17 . . . 4 (𝑣𝑌 → ¬ 𝑌𝑣)
2423rgen 3060 . . 3 𝑣𝑌 ¬ 𝑌𝑣
25 psseq1 3836 . . . . . 6 (𝑢 = 𝑌 → (𝑢𝑣 𝑌𝑣))
2625notbid 307 . . . . 5 (𝑢 = 𝑌 → (¬ 𝑢𝑣 ↔ ¬ 𝑌𝑣))
2726ralbidv 3124 . . . 4 (𝑢 = 𝑌 → (∀𝑣𝑌 ¬ 𝑢𝑣 ↔ ∀𝑣𝑌 ¬ 𝑌𝑣))
2827rspcev 3449 . . 3 (( 𝑌𝑌 ∧ ∀𝑣𝑌 ¬ 𝑌𝑣) → ∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣)
2924, 28mpan2 709 . 2 ( 𝑌𝑌 → ∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣)
3020, 29impbid1 215 1 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   ⊆ wss 3715   ⊊ wpss 3716  ∪ cuni 4588   Or wor 5186   [⊊] crpss 7101 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-so 5188  df-xp 5272  df-rel 5273  df-rpss 7102 This theorem is referenced by:  fin2i2  9332  isfin2-2  9333  fin12  9427
 Copyright terms: Public domain W3C validator