MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sornom Structured version   Visualization version   GIF version

Theorem sornom 9137
Description: The range of a single-step monotone function from ω into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Assertion
Ref Expression
sornom ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Distinct variable groups:   𝐹,𝑎   𝑅,𝑎

Proof of Theorem sornom
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1083 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Po ran 𝐹)
2 fvelrnb 6282 . . . . . 6 (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑑 ∈ ω (𝐹𝑑) = 𝑏))
3 fvelrnb 6282 . . . . . 6 (𝐹 Fn ω → (𝑐 ∈ ran 𝐹 ↔ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
42, 3anbi12d 747 . . . . 5 (𝐹 Fn ω → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
543ad2ant1 1102 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐)))
6 reeanv 3136 . . . . 5 (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) ↔ (∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐))
7 nnord 7115 . . . . . . . . . . 11 (𝑑 ∈ ω → Ord 𝑑)
8 nnord 7115 . . . . . . . . . . 11 (𝑒 ∈ ω → Ord 𝑒)
9 ordtri2or2 5861 . . . . . . . . . . 11 ((Ord 𝑑 ∧ Ord 𝑒) → (𝑑𝑒𝑒𝑑))
107, 8, 9syl2an 493 . . . . . . . . . 10 ((𝑑 ∈ ω ∧ 𝑒 ∈ ω) → (𝑑𝑒𝑒𝑑))
1110adantl 481 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒𝑒𝑑))
12 vex 3234 . . . . . . . . . . 11 𝑑 ∈ V
13 vex 3234 . . . . . . . . . . 11 𝑒 ∈ V
14 eleq1 2718 . . . . . . . . . . . . . 14 (𝑏 = 𝑑 → (𝑏 ∈ ω ↔ 𝑑 ∈ ω))
15 eleq1 2718 . . . . . . . . . . . . . 14 (𝑐 = 𝑒 → (𝑐 ∈ ω ↔ 𝑒 ∈ ω))
1614, 15bi2anan9 935 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)))
1716anbi2d 740 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω))))
18 sseq12 3661 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (𝑏𝑐𝑑𝑒))
19 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
20 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (𝐹𝑐) = (𝐹𝑒))
2119, 20breqan12d 4701 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑑)𝑅(𝐹𝑒)))
2219, 20eqeqan12d 2667 . . . . . . . . . . . . . 14 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑑) = (𝐹𝑒)))
2321, 22orbi12d 746 . . . . . . . . . . . . 13 ((𝑏 = 𝑑𝑐 = 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
2418, 23imbi12d 333 . . . . . . . . . . . 12 ((𝑏 = 𝑑𝑐 = 𝑒) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)))))
2517, 24imbi12d 333 . . . . . . . . . . 11 ((𝑏 = 𝑑𝑐 = 𝑒) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))))
26 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑏 → (𝐹𝑑) = (𝐹𝑏))
2726breq2d 4697 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑏)))
2826eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑏 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑏)))
2927, 28orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑏 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
3029imbi2d 329 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏)))))
31 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑒 → (𝐹𝑑) = (𝐹𝑒))
3231breq2d 4697 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑒)))
3331eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑒)))
3432, 33orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))))
3534imbi2d 329 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)))))
36 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = suc 𝑒 → (𝐹𝑑) = (𝐹‘suc 𝑒))
3736breq2d 4697 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
3836eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑑 = suc 𝑒 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
3937, 38orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑑 = suc 𝑒 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
4039imbi2d 329 . . . . . . . . . . . . . . 15 (𝑑 = suc 𝑒 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
41 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑐 → (𝐹𝑑) = (𝐹𝑐))
4241breq2d 4697 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏)𝑅(𝐹𝑑) ↔ (𝐹𝑏)𝑅(𝐹𝑐)))
4341eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑐 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑏) = (𝐹𝑐)))
4442, 43orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑐 → (((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑)) ↔ ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
4544imbi2d 329 . . . . . . . . . . . . . . 15 (𝑑 = 𝑐 → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑑) ∨ (𝐹𝑏) = (𝐹𝑑))) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))))
46 eqid 2651 . . . . . . . . . . . . . . . . 17 (𝐹𝑏) = (𝐹𝑏)
4746olci 405 . . . . . . . . . . . . . . . 16 ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))
48472a1i 12 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑏) ∨ (𝐹𝑏) = (𝐹𝑏))))
49 simplll 813 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
50 simpr2 1088 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)))
51 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
52 suceq 5828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑒 → suc 𝑎 = suc 𝑒)
5352fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑒 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑒))
5451, 53breq12d 4698 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
5551, 53eqeq12d 2666 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑒 → ((𝐹𝑎) = (𝐹‘suc 𝑎) ↔ (𝐹𝑒) = (𝐹‘suc 𝑒)))
5654, 55orbi12d 746 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑒 → (((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ↔ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒))))
5756rspcva 3338 . . . . . . . . . . . . . . . . . . 19 ((𝑒 ∈ ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎))) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)))
5849, 50, 57syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)))
59 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑅 Po ran 𝐹)
60 simprl 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝐹 Fn ω)
61 simpllr 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑏 ∈ ω)
62 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑏 ∈ ω) → (𝐹𝑏) ∈ ran 𝐹)
6360, 61, 62syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑏) ∈ ran 𝐹)
64 simplll 813 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → 𝑒 ∈ ω)
65 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ 𝑒 ∈ ω) → (𝐹𝑒) ∈ ran 𝐹)
6660, 64, 65syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹𝑒) ∈ ran 𝐹)
67 peano2 7128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
6867ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → suc 𝑒 ∈ ω)
69 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹 Fn ω ∧ suc 𝑒 ∈ ω) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
7060, 68, 69syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (𝐹‘suc 𝑒) ∈ ran 𝐹)
71 potr 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 Po ran 𝐹 ∧ ((𝐹𝑏) ∈ ran 𝐹 ∧ (𝐹𝑒) ∈ ran 𝐹 ∧ (𝐹‘suc 𝑒) ∈ ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7259, 63, 66, 70, 71syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
7372imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑏)𝑅(𝐹𝑒) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7473ancom2s 861 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒))
7574orcd 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∧ (𝐹𝑏)𝑅(𝐹𝑒))) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
7675expr 642 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏)𝑅(𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
77 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ↔ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)))
7877biimprcd 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
79 orc 399 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))
8078, 79syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8180adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → ((𝐹𝑏) = (𝐹𝑒) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8276, 81jaod 394 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) ∧ (𝐹𝑒)𝑅(𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8382ex 449 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒)𝑅(𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
84 breq2 4689 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏)𝑅(𝐹𝑒) ↔ (𝐹𝑏)𝑅(𝐹‘suc 𝑒)))
85 eqeq2 2662 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑒) = (𝐹‘suc 𝑒) → ((𝐹𝑏) = (𝐹𝑒) ↔ (𝐹𝑏) = (𝐹‘suc 𝑒)))
8684, 85orbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) ↔ ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8786biimpd 219 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
8887a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → ((𝐹𝑒) = (𝐹‘suc 𝑒) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
8983, 88jaod 394 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
90893adantr2 1241 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑒)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑒) = (𝐹‘suc 𝑒)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9158, 90mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) ∧ (𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹)) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒))))
9291ex 449 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒)) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9392a2d 29 . . . . . . . . . . . . . . 15 (((𝑒 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑒) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑒) ∨ (𝐹𝑏) = (𝐹𝑒))) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹‘suc 𝑒) ∨ (𝐹𝑏) = (𝐹‘suc 𝑒)))))
9430, 35, 40, 45, 48, 93findsg 7135 . . . . . . . . . . . . . 14 (((𝑐 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9594ancom1s 864 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐) → ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9695impcom 445 . . . . . . . . . . . 12 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ∧ 𝑏𝑐)) → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))
9796expr 642 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))))
9812, 13, 25, 97vtocl2 3292 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑑𝑒 → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒))))
99 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑏 = 𝑒 → (𝑏 ∈ ω ↔ 𝑒 ∈ ω))
100 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → (𝑐 ∈ ω ↔ 𝑑 ∈ ω))
10199, 100bi2anan9 935 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) ↔ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)))
102101anbi2d 740 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ↔ ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω))))
103 sseq12 3661 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (𝑏𝑐𝑒𝑑))
104 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑒 → (𝐹𝑏) = (𝐹𝑒))
105 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
106104, 105breqan12d 4701 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏)𝑅(𝐹𝑐) ↔ (𝐹𝑒)𝑅(𝐹𝑑)))
107104, 105eqeqan12d 2667 . . . . . . . . . . . . . . 15 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝐹𝑏) = (𝐹𝑐) ↔ (𝐹𝑒) = (𝐹𝑑)))
108106, 107orbi12d 746 . . . . . . . . . . . . . 14 ((𝑏 = 𝑒𝑐 = 𝑑) → (((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)) ↔ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
109103, 108imbi12d 333 . . . . . . . . . . . . 13 ((𝑏 = 𝑒𝑐 = 𝑑) → ((𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐))) ↔ (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
110102, 109imbi12d 333 . . . . . . . . . . . 12 ((𝑏 = 𝑒𝑐 = 𝑑) → ((((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏𝑐 → ((𝐹𝑏)𝑅(𝐹𝑐) ∨ (𝐹𝑏) = (𝐹𝑐)))) ↔ (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))))
11113, 12, 110, 97vtocl2 3292 . . . . . . . . . . 11 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑒 ∈ ω ∧ 𝑑 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
112111ancom2s 861 . . . . . . . . . 10 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (𝑒𝑑 → ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
11398, 112orim12d 901 . . . . . . . . 9 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝑑𝑒𝑒𝑑) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)))))
11411, 113mpd 15 . . . . . . . 8 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))))
115 3mix1 1250 . . . . . . . . . 10 ((𝐹𝑑)𝑅(𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
116 3mix2 1251 . . . . . . . . . 10 ((𝐹𝑑) = (𝐹𝑒) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
117115, 116jaoi 393 . . . . . . . . 9 (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
118 3mix3 1252 . . . . . . . . . 10 ((𝐹𝑒)𝑅(𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
119116eqcoms 2659 . . . . . . . . . 10 ((𝐹𝑒) = (𝐹𝑑) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
120118, 119jaoi 393 . . . . . . . . 9 (((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
121117, 120jaoi 393 . . . . . . . 8 ((((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒)) ∨ ((𝐹𝑒)𝑅(𝐹𝑑) ∨ (𝐹𝑒) = (𝐹𝑑))) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
122114, 121syl 17 . . . . . . 7 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → ((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)))
123 breq12 4690 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑)𝑅(𝐹𝑒) ↔ 𝑏𝑅𝑐))
124 eqeq12 2664 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑑) = (𝐹𝑒) ↔ 𝑏 = 𝑐))
125 breq12 4690 . . . . . . . . 9 (((𝐹𝑒) = 𝑐 ∧ (𝐹𝑑) = 𝑏) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
126125ancoms 468 . . . . . . . 8 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → ((𝐹𝑒)𝑅(𝐹𝑑) ↔ 𝑐𝑅𝑏))
127123, 124, 1263orbi123d 1438 . . . . . . 7 (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (((𝐹𝑑)𝑅(𝐹𝑒) ∨ (𝐹𝑑) = (𝐹𝑒) ∨ (𝐹𝑒)𝑅(𝐹𝑑)) ↔ (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
128122, 127syl5ibcom 235 . . . . . 6 (((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) ∧ (𝑑 ∈ ω ∧ 𝑒 ∈ ω)) → (((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
129128rexlimdvva 3067 . . . . 5 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → (∃𝑑 ∈ ω ∃𝑒 ∈ ω ((𝐹𝑑) = 𝑏 ∧ (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1306, 129syl5bir 233 . . . 4 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((∃𝑑 ∈ ω (𝐹𝑑) = 𝑏 ∧ ∃𝑒 ∈ ω (𝐹𝑒) = 𝑐) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1315, 130sylbid 230 . . 3 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ((𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹) → (𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
132131ralrimivv 2999 . 2 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏))
133 df-so 5065 . 2 (𝑅 Or ran 𝐹 ↔ (𝑅 Po ran 𝐹 ∧ ∀𝑏 ∈ ran 𝐹𝑐 ∈ ran 𝐹(𝑏𝑅𝑐𝑏 = 𝑐𝑐𝑅𝑏)))
1341, 132, 133sylanbrc 699 1 ((𝐹 Fn ω ∧ ∀𝑎 ∈ ω ((𝐹𝑎)𝑅(𝐹‘suc 𝑎) ∨ (𝐹𝑎) = (𝐹‘suc 𝑎)) ∧ 𝑅 Po ran 𝐹) → 𝑅 Or ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  wss 3607   class class class wbr 4685   Po wpo 5062   Or wor 5063  ran crn 5144  Ord word 5760  suc csuc 5763   Fn wfn 5921  cfv 5926  ωcom 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-om 7108
This theorem is referenced by:  fin23lem40  9211
  Copyright terms: Public domain W3C validator