![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5172 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 485 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1070 ∀wral 3061 class class class wbr 4787 Po wpo 5169 Or wor 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-so 5172 |
This theorem is referenced by: sonr 5192 sotr 5193 so2nr 5195 so3nr 5196 soltmin 5672 predso 5841 soxp 7445 fimax2g 8366 wofi 8369 fimin2g 8563 ordtypelem8 8590 wemaplem2 8612 wemapsolem 8615 cantnf 8758 fin23lem27 9356 iccpnfhmeo 22964 xrhmeo 22965 logccv 24630 ex-po 27634 xrge0iifiso 30321 soseq 32091 incsequz2 33877 |
Copyright terms: Public domain | W3C validator |