Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  somo Structured version   Visualization version   GIF version

Theorem somo 5213
 Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
somo (𝑅 Or 𝐴 → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem somo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 4799 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝑅𝑧𝑥𝑅𝑧))
21notbid 307 . . . . . . . . . 10 (𝑦 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑥𝑅𝑧))
32rspcv 3437 . . . . . . . . 9 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑧 → ¬ 𝑥𝑅𝑧))
4 breq1 4799 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
54notbid 307 . . . . . . . . . 10 (𝑦 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑧𝑅𝑥))
65rspcv 3437 . . . . . . . . 9 (𝑧𝐴 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 → ¬ 𝑧𝑅𝑥))
73, 6im2anan9 916 . . . . . . . 8 ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑧 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)))
87ancomsd 469 . . . . . . 7 ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥)))
98imp 444 . . . . . 6 (((𝑥𝐴𝑧𝐴) ∧ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧)) → (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))
10 ioran 512 . . . . . . 7 (¬ (𝑥𝑅𝑧𝑧𝑅𝑥) ↔ (¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥))
11 solin 5202 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
12 df-3or 1073 . . . . . . . . . 10 ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥))
1311, 12sylib 208 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥))
14 or32 550 . . . . . . . . 9 (((𝑥𝑅𝑧𝑥 = 𝑧) ∨ 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑧𝑧𝑅𝑥) ∨ 𝑥 = 𝑧))
1513, 14sylib 208 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑧𝑅𝑥) ∨ 𝑥 = 𝑧))
1615ord 391 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (¬ (𝑥𝑅𝑧𝑧𝑅𝑥) → 𝑥 = 𝑧))
1710, 16syl5bir 233 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → ((¬ 𝑥𝑅𝑧 ∧ ¬ 𝑧𝑅𝑥) → 𝑥 = 𝑧))
189, 17syl5 34 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑧𝐴)) → (((𝑥𝐴𝑧𝐴) ∧ (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧)) → 𝑥 = 𝑧))
1918exp4b 633 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑧𝐴) → ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))))
2019pm2.43d 53 . . 3 (𝑅 Or 𝐴 → ((𝑥𝐴𝑧𝐴) → ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧)))
2120ralrimivv 3100 . 2 (𝑅 Or 𝐴 → ∀𝑥𝐴𝑧𝐴 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))
22 breq2 4800 . . . . 5 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
2322notbid 307 . . . 4 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
2423ralbidv 3116 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧))
2524rmo4 3532 . 2 (∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ((∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑧) → 𝑥 = 𝑧))
2621, 25sylibr 224 1 (𝑅 Or 𝐴 → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∨ w3o 1071   ∈ wcel 2131  ∀wral 3042  ∃*wrmo 3045   class class class wbr 4796   Or wor 5178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rmo 3050  df-rab 3051  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-br 4797  df-so 5180 This theorem is referenced by:  wereu  5254  wereu2  5255  nomaxmo  32145
 Copyright terms: Public domain W3C validator