MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioc Structured version   Visualization version   GIF version

Theorem snunioc 12514
Description: The closure of the open end of a left-open real interval. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Assertion
Ref Expression
snunioc ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))

Proof of Theorem snunioc
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccid 12434 . . . 4 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
213ad2ant1 1128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
32uneq1d 3910 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = ({𝐴} ∪ (𝐴(,]𝐵)))
4 simp1 1131 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
5 simp2 1132 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
6 xrleid 12197 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
763ad2ant1 1128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
8 simp3 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
9 df-icc 12396 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
10 df-ioc 12394 . . . 4 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
11 xrltnle 10318 . . . 4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
12 xrletr 12203 . . . 4 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐴𝐴𝐵) → 𝑤𝐵))
13 simprr 813 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 < 𝑤)
14 simpl1 1228 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴 ∈ ℝ*)
15 simpl3 1232 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝑤 ∈ ℝ*)
16 xrltle 12196 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
1714, 15, 16syl2anc 696 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → (𝐴 < 𝑤𝐴𝑤))
1813, 17mpd 15 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝐴𝐴 < 𝑤)) → 𝐴𝑤)
1918ex 449 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐴𝐴 < 𝑤) → 𝐴𝑤))
209, 10, 11, 9, 12, 19ixxun 12405 . . 3 (((𝐴 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐴𝐴𝐵)) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
214, 4, 5, 7, 8, 20syl32anc 1485 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐴) ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
223, 21eqtr3d 2797 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴} ∪ (𝐴(,]𝐵)) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  cun 3714  {csn 4322   class class class wbr 4805  (class class class)co 6815  *cxr 10286   < clt 10287  cle 10288  (,]cioc 12390  [,]cicc 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-pre-lttri 10223  ax-pre-lttrn 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-ioc 12394  df-icc 12396
This theorem is referenced by:  xrge0iifcnv  30310  xrge0iifiso  30312  xrge0iifhom  30314
  Copyright terms: Public domain W3C validator