![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4378 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 3809 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3645 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4215 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtr4i 3671 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3605 ⊆ wss 3607 {csn 4210 {cpr 4212 {ctp 4214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-pr 4213 df-tp 4215 |
This theorem is referenced by: fr3nr 7021 rngplusg 16049 srngplusg 16057 lmodplusg 16066 ipsaddg 16073 ipsvsca 16076 phlplusg 16083 topgrpplusg 16091 otpstset 16100 otpstsetOLD 16104 odrngplusg 16115 odrngle 16118 prdsplusg 16165 prdsvsca 16167 prdsle 16169 imasplusg 16224 imasvsca 16227 imasle 16230 fuchom 16668 setchomfval 16776 catchomfval 16795 estrchomfval 16813 xpchomfval 16866 psrplusg 19429 psrvscafval 19438 cnfldadd 19799 cnfldle 19803 trkgdist 25390 algaddg 38066 clsk1indlem4 38659 rngchomfvalALTV 42309 ringchomfvalALTV 42372 |
Copyright terms: Public domain | W3C validator |