![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snsslVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssl 39582. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snsslVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snsslVD | ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 39310 | . . 3 ⊢ ( {𝐴} ⊆ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) | |
2 | snsslVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | snid 4353 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
4 | ssel2 3739 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐵) | |
5 | 1, 3, 4 | e10an 39440 | . 2 ⊢ ( {𝐴} ⊆ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
6 | 5 | in1 39307 | 1 ⊢ ({𝐴} ⊆ 𝐵 → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-sn 4322 df-vd1 39306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |