![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4447). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4447 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2127 Vcvv 3328 ⊆ wss 3703 {csn 4309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-v 3330 df-in 3710 df-ss 3717 df-sn 4310 |
This theorem is referenced by: snssgOLD 4449 prssOLD 4485 tpss 4501 snelpw 5050 sspwb 5054 nnullss 5067 exss 5068 pwssun 5158 relsnOLD 5371 fvimacnvi 6482 fvimacnv 6483 fvimacnvALT 6487 fnressn 6576 limensuci 8289 domunfican 8386 finsschain 8426 epfrs 8768 tc2 8779 tcsni 8780 cda1dif 9161 fpwwe2lem13 9627 wunfi 9706 uniwun 9725 un0mulcl 11490 nn0ssz 11561 xrinfmss 12304 hashbclem 13399 hashf1lem1 13402 hashf1lem2 13403 fsum2dlem 14671 fsumabs 14703 fsumrlim 14713 fsumo1 14714 fsumiun 14723 incexclem 14738 fprod2dlem 14880 lcmfunsnlem 15527 lcmfun 15531 coprmprod 15548 coprmproddvdslem 15549 ramcl2 15893 0ram 15897 strfv 16080 imasaddfnlem 16361 imasaddvallem 16362 acsfn1 16494 drsdirfi 17110 sylow2a 18205 gsumpt 18532 dprdfadd 18590 ablfac1eulem 18642 pgpfaclem1 18651 rsp1 19397 mplcoe1 19638 mplcoe5 19641 mdetunilem9 20599 opnnei 21097 iscnp4 21240 cnpnei 21241 hausnei2 21330 fiuncmp 21380 llycmpkgen2 21526 1stckgen 21530 ptbasfi 21557 xkoccn 21595 xkoptsub 21630 ptcmpfi 21789 cnextcn 22043 tsmsid 22115 ustuqtop3 22219 utopreg 22228 prdsdsf 22344 prdsmet 22347 prdsbl 22468 fsumcn 22845 itgfsum 23763 dvmptfsum 23908 elply2 24122 elplyd 24128 ply1term 24130 ply0 24134 plymullem 24142 jensenlem1 24883 jensenlem2 24884 frcond3 27394 h1de2bi 28693 spansni 28696 gsumle 30059 gsumvsca1 30062 gsumvsca2 30063 ordtconnlem1 30250 cntnevol 30571 eulerpartgbij 30714 breprexpnat 30992 cvmlift2lem1 31562 cvmlift2lem12 31574 dfon2lem7 31970 bj-tagss 33245 lindsenlbs 33686 matunitlindflem1 33687 divrngidl 34109 isfldidl 34149 ispridlc 34151 pclfinclN 35708 osumcllem10N 35723 pexmidlem7N 35734 acsfn1p 38240 clsk1indlem4 38813 clsk1indlem1 38814 fourierdlem62 40857 |
Copyright terms: Public domain | W3C validator |