![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsn0non | Structured version Visualization version GIF version |
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7236). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6009. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
snsn0non | ⊢ ¬ {{∅}} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 5003 | . . . . 5 ⊢ {∅} ∈ V | |
2 | 1 | snid 4354 | . . . 4 ⊢ {∅} ∈ {{∅}} |
3 | 2 | n0ii 4066 | . . 3 ⊢ ¬ {{∅}} = ∅ |
4 | 0ex 4943 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 4 | snid 4354 | . . . . . 6 ⊢ ∅ ∈ {∅} |
6 | 5 | n0ii 4066 | . . . . 5 ⊢ ¬ {∅} = ∅ |
7 | eqcom 2768 | . . . . 5 ⊢ (∅ = {∅} ↔ {∅} = ∅) | |
8 | 6, 7 | mtbir 312 | . . . 4 ⊢ ¬ ∅ = {∅} |
9 | 4 | elsn 4337 | . . . 4 ⊢ (∅ ∈ {{∅}} ↔ ∅ = {∅}) |
10 | 8, 9 | mtbir 312 | . . 3 ⊢ ¬ ∅ ∈ {{∅}} |
11 | 3, 10 | pm3.2ni 935 | . 2 ⊢ ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}) |
12 | on0eqel 6007 | . 2 ⊢ ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})) | |
13 | 11, 12 | mto 188 | 1 ⊢ ¬ {{∅}} ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 382 = wceq 1632 ∈ wcel 2140 ∅c0 4059 {csn 4322 Oncon0 5885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-tr 4906 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-ord 5888 df-on 5889 |
This theorem is referenced by: onnev 6010 onpsstopbas 32757 |
Copyright terms: Public domain | W3C validator |