![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4339 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 {csn 4210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-nul 3949 df-sn 4211 |
This theorem is referenced by: snsssn 4404 0nep0 4866 notzfaus 4870 nnullss 4960 opthwiener 5005 fparlem3 7324 fparlem4 7325 1n0 7620 fodomr 8152 mapdom3 8173 ssfii 8366 marypha1lem 8380 fseqdom 8887 dfac5lem3 8986 isfin1-3 9246 axcc2lem 9296 axdc4lem 9315 fpwwe2lem13 9502 hash1n0 13247 s1nz 13423 isumltss 14624 0subg 17666 pmtrprfvalrn 17954 gsumxp 18421 lsssn0 18996 frlmip 20165 t1connperf 21287 dissnlocfin 21380 isufil2 21759 cnextf 21917 ustuqtop1 22092 rrxip 23224 dveq0 23808 wwlksnext 26856 clwwlknon1sn 27075 esumnul 30238 bnj970 31143 noxp1o 31941 bdayfo 31953 noetalem3 31990 noetalem4 31991 scutun12 32042 filnetlem4 32501 bj-0nelsngl 33084 bj-2upln1upl 33137 dibn0 36759 diophrw 37639 dfac11 37949 |
Copyright terms: Public domain | W3C validator |