![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnex | Structured version Visualization version GIF version |
Description: The class of all singletons is a proper class. See also pwnex 7115. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof shortened by BJ, 5-Dec-2021.) |
Ref | Expression |
---|---|
snnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7112 | . . 3 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
2 | df-nel 3047 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ (∀𝑦({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V) |
4 | snex 5036 | . . 3 ⊢ {𝑦} ∈ V | |
5 | vsnid 4348 | . . 3 ⊢ 𝑦 ∈ {𝑦} | |
6 | 4, 5 | pm3.2i 447 | . 2 ⊢ ({𝑦} ∈ V ∧ 𝑦 ∈ {𝑦}) |
7 | 3, 6 | mpg 1872 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 382 ∀wal 1629 = wceq 1631 ∃wex 1852 ∈ wcel 2145 {cab 2757 ∉ wnel 3046 Vcvv 3351 {csn 4316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-nel 3047 df-ral 3066 df-rex 3067 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-sn 4317 df-pr 4319 df-uni 4575 df-iun 4656 |
This theorem is referenced by: fiprc 8195 |
Copyright terms: Public domain | W3C validator |