![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
snnen2o | ⊢ ¬ {𝐴} ≈ 2𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 7764 | . . . 4 ⊢ 1𝑜 ∈ ω | |
2 | php5 8189 | . . . 4 ⊢ (1𝑜 ∈ ω → ¬ 1𝑜 ≈ suc 1𝑜) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ 1𝑜 ≈ suc 1𝑜 |
4 | ensn1g 8062 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1𝑜) | |
5 | df-2o 7606 | . . . . . 6 ⊢ 2𝑜 = suc 1𝑜 | |
6 | 5 | eqcomi 2660 | . . . . 5 ⊢ suc 1𝑜 = 2𝑜 |
7 | 6 | breq2i 4693 | . . . 4 ⊢ (1𝑜 ≈ suc 1𝑜 ↔ 1𝑜 ≈ 2𝑜) |
8 | ensymb 8045 | . . . . . 6 ⊢ ({𝐴} ≈ 1𝑜 ↔ 1𝑜 ≈ {𝐴}) | |
9 | entr 8049 | . . . . . . 7 ⊢ ((1𝑜 ≈ {𝐴} ∧ {𝐴} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜) | |
10 | 9 | ex 449 | . . . . . 6 ⊢ (1𝑜 ≈ {𝐴} → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜)) |
11 | 8, 10 | sylbi 207 | . . . . 5 ⊢ ({𝐴} ≈ 1𝑜 → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜)) |
12 | 11 | con3rr3 151 | . . . 4 ⊢ (¬ 1𝑜 ≈ 2𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜)) |
13 | 7, 12 | sylnbi 319 | . . 3 ⊢ (¬ 1𝑜 ≈ suc 1𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜)) |
14 | 3, 4, 13 | mpsyl 68 | . 2 ⊢ (𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜) |
15 | 2on0 7614 | . . . 4 ⊢ 2𝑜 ≠ ∅ | |
16 | ensymb 8045 | . . . . 5 ⊢ (∅ ≈ 2𝑜 ↔ 2𝑜 ≈ ∅) | |
17 | en0 8060 | . . . . 5 ⊢ (2𝑜 ≈ ∅ ↔ 2𝑜 = ∅) | |
18 | 16, 17 | bitri 264 | . . . 4 ⊢ (∅ ≈ 2𝑜 ↔ 2𝑜 = ∅) |
19 | 15, 18 | nemtbir 2918 | . . 3 ⊢ ¬ ∅ ≈ 2𝑜 |
20 | snprc 4285 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
21 | 20 | biimpi 206 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
22 | 21 | breq1d 4695 | . . 3 ⊢ (¬ 𝐴 ∈ V → ({𝐴} ≈ 2𝑜 ↔ ∅ ≈ 2𝑜)) |
23 | 19, 22 | mtbiri 316 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜) |
24 | 14, 23 | pm2.61i 176 | 1 ⊢ ¬ {𝐴} ≈ 2𝑜 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 {csn 4210 class class class wbr 4685 suc csuc 5763 ωcom 7107 1𝑜c1o 7598 2𝑜c2o 7599 ≈ cen 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 |
This theorem is referenced by: pmtrsn 17985 |
Copyright terms: Public domain | W3C validator |