![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snlindsntorlem | Structured version Visualization version GIF version |
Description: Lemma for snlindsntor 42778. (Contributed by AV, 15-Apr-2019.) |
Ref | Expression |
---|---|
snlindsntor.b | ⊢ 𝐵 = (Base‘𝑀) |
snlindsntor.r | ⊢ 𝑅 = (Scalar‘𝑀) |
snlindsntor.s | ⊢ 𝑆 = (Base‘𝑅) |
snlindsntor.0 | ⊢ 0 = (0g‘𝑅) |
snlindsntor.z | ⊢ 𝑍 = (0g‘𝑀) |
snlindsntor.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
snlindsntorlem | ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2771 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉}) | |
2 | fsng 6546 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) | |
3 | 2 | adantll 685 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) |
4 | 1, 3 | mpbird 247 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠}) |
5 | snssi 4472 | . . . . . 6 ⊢ (𝑠 ∈ 𝑆 → {𝑠} ⊆ 𝑆) | |
6 | 5 | adantl 467 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {𝑠} ⊆ 𝑆) |
7 | 4, 6 | fssd 6197 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆) |
8 | snlindsntor.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
9 | fvex 6342 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
10 | 8, 9 | eqeltri 2845 | . . . . . 6 ⊢ 𝑆 ∈ V |
11 | snex 5036 | . . . . . 6 ⊢ {𝑋} ∈ V | |
12 | 10, 11 | pm3.2i 447 | . . . . 5 ⊢ (𝑆 ∈ V ∧ {𝑋} ∈ V) |
13 | elmapg 8021 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) | |
14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) |
15 | 7, 14 | mpbird 247 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋})) |
16 | oveq1 6799 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓( linC ‘𝑀){𝑋}) = ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋})) | |
17 | 16 | eqeq1d 2772 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍)) |
18 | fveq1 6331 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓‘𝑋) = ({〈𝑋, 𝑠〉}‘𝑋)) | |
19 | 18 | eqeq1d 2772 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓‘𝑋) = 0 ↔ ({〈𝑋, 𝑠〉}‘𝑋) = 0 )) |
20 | 17, 19 | imbi12d 333 | . . . 4 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ))) |
21 | snlindsntor.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
22 | snlindsntor.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
23 | snlindsntor.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑀) | |
24 | 21, 22, 8, 23 | lincvalsng 42723 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
25 | 24 | 3expa 1110 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
26 | 25 | eqeq1d 2772 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍)) |
27 | fvsng 6590 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) | |
28 | 27 | adantll 685 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) |
29 | 28 | eqeq1d 2772 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉}‘𝑋) = 0 ↔ 𝑠 = 0 )) |
30 | 26, 29 | imbi12d 333 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ((({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
31 | 20, 30 | sylan9bbr 494 | . . 3 ⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 = {〈𝑋, 𝑠〉}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
32 | 15, 31 | rspcdv 3461 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
33 | 32 | ralrimdva 3117 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 Vcvv 3349 ⊆ wss 3721 {csn 4314 〈cop 4320 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ↑𝑚 cmap 8008 Basecbs 16063 Scalarcsca 16151 ·𝑠 cvsca 16152 0gc0g 16307 LModclmod 19072 linC clinc 42711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-0g 16309 df-gsum 16310 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-mulg 17748 df-cntz 17956 df-lmod 19074 df-linc 42713 |
This theorem is referenced by: snlindsntor 42778 |
Copyright terms: Public domain | W3C validator |