Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snlindsntorlem Structured version   Visualization version   GIF version

Theorem snlindsntorlem 42777
 Description: Lemma for snlindsntor 42778. (Contributed by AV, 15-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
snlindsntorlem ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝑀,𝑠   𝑆,𝑓,𝑠   𝑓,𝑋,𝑠   𝑓,𝑍,𝑠   · ,𝑓,𝑠   0 ,𝑓,𝑠
Allowed substitution hints:   𝑅(𝑓,𝑠)

Proof of Theorem snlindsntorlem
StepHypRef Expression
1 eqidd 2771 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩})
2 fsng 6546 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
32adantll 685 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠} ↔ {⟨𝑋, 𝑠⟩} = {⟨𝑋, 𝑠⟩}))
41, 3mpbird 247 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶{𝑠})
5 snssi 4472 . . . . . 6 (𝑠𝑆 → {𝑠} ⊆ 𝑆)
65adantl 467 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {𝑠} ⊆ 𝑆)
74, 6fssd 6197 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆)
8 snlindsntor.s . . . . . . 7 𝑆 = (Base‘𝑅)
9 fvex 6342 . . . . . . 7 (Base‘𝑅) ∈ V
108, 9eqeltri 2845 . . . . . 6 𝑆 ∈ V
11 snex 5036 . . . . . 6 {𝑋} ∈ V
1210, 11pm3.2i 447 . . . . 5 (𝑆 ∈ V ∧ {𝑋} ∈ V)
13 elmapg 8021 . . . . 5 ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
1412, 13mp1i 13 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}) ↔ {⟨𝑋, 𝑠⟩}:{𝑋}⟶𝑆))
157, 14mpbird 247 . . 3 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → {⟨𝑋, 𝑠⟩} ∈ (𝑆𝑚 {𝑋}))
16 oveq1 6799 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓( linC ‘𝑀){𝑋}) = ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}))
1716eqeq1d 2772 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍))
18 fveq1 6331 . . . . . 6 (𝑓 = {⟨𝑋, 𝑠⟩} → (𝑓𝑋) = ({⟨𝑋, 𝑠⟩}‘𝑋))
1918eqeq1d 2772 . . . . 5 (𝑓 = {⟨𝑋, 𝑠⟩} → ((𝑓𝑋) = 0 ↔ ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ))
2017, 19imbi12d 333 . . . 4 (𝑓 = {⟨𝑋, 𝑠⟩} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 )))
21 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
22 snlindsntor.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
23 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
2421, 22, 8, 23lincvalsng 42723 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
25243expa 1110 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋))
2625eqeq1d 2772 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍))
27 fvsng 6590 . . . . . . 7 ((𝑋𝐵𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2827adantll 685 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ({⟨𝑋, 𝑠⟩}‘𝑋) = 𝑠)
2928eqeq1d 2772 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (({⟨𝑋, 𝑠⟩}‘𝑋) = 0𝑠 = 0 ))
3026, 29imbi12d 333 . . . 4 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → ((({⟨𝑋, 𝑠⟩} ( linC ‘𝑀){𝑋}) = 𝑍 → ({⟨𝑋, 𝑠⟩}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3120, 30sylan9bbr 494 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) ∧ 𝑓 = {⟨𝑋, 𝑠⟩}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3215, 31rspcdv 3461 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑠𝑆) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
3332ralrimdva 3117 1 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → (∀𝑓 ∈ (𝑆𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓𝑋) = 0 ) → ∀𝑠𝑆 ((𝑠 · 𝑋) = 𝑍𝑠 = 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060  Vcvv 3349   ⊆ wss 3721  {csn 4314  ⟨cop 4320  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ↑𝑚 cmap 8008  Basecbs 16063  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  LModclmod 19072   linC clinc 42711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-0g 16309  df-gsum 16310  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-mulg 17748  df-cntz 17956  df-lmod 19074  df-linc 42713 This theorem is referenced by:  snlindsntor  42778
 Copyright terms: Public domain W3C validator