![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version GIF version |
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
sniota | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2508 | . 2 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
2 | nfab1 2795 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | nfiota1 5891 | . . 3 ⊢ Ⅎ𝑥(℩𝑥𝜑) | |
4 | 3 | nfsn 4274 | . 2 ⊢ Ⅎ𝑥{(℩𝑥𝜑)} |
5 | iota1 5903 | . . . 4 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) | |
6 | eqcom 2658 | . . . 4 ⊢ ((℩𝑥𝜑) = 𝑥 ↔ 𝑥 = (℩𝑥𝜑)) | |
7 | 5, 6 | syl6bb 276 | . . 3 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
8 | abid 2639 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | velsn 4226 | . . 3 ⊢ (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑)) | |
10 | 7, 8, 9 | 3bitr4g 303 | . 2 ⊢ (∃!𝑥𝜑 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)})) |
11 | 1, 2, 4, 10 | eqrd 3655 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} = {(℩𝑥𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∃!weu 2498 {cab 2637 {csn 4210 ℩cio 5887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-sbc 3469 df-un 3612 df-sn 4211 df-pr 4213 df-uni 4469 df-iota 5889 |
This theorem is referenced by: snriota 6681 |
Copyright terms: Public domain | W3C validator |