![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snifpsrbag | Structured version Visualization version GIF version |
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
snifpsrbag | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | 0nn0 11509 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℕ0) |
4 | 1, 3 | ifcld 4270 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
5 | 4 | adantr 466 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑋, 𝑁, 0) ∈ ℕ0) |
6 | eqid 2771 | . . 3 ⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) | |
7 | 5, 6 | fmptd 6527 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) |
8 | id 22 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
9 | c0ex 10236 | . . . . . 6 ⊢ 0 ∈ V | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ V) |
11 | 8, 10, 6 | sniffsupp 8471 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
12 | 11 | adantr 466 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0) |
13 | frnnn0fsupp 11552 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) | |
14 | 13 | adantlr 694 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0 ↔ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin)) |
15 | 14 | bicomd 213 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
16 | 7, 15 | mpdan 667 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) finSupp 0)) |
17 | 12, 16 | mpbird 247 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin) |
18 | psrbag.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 18 | psrbag 19579 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
20 | 19 | adantr 466 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷 ↔ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)):𝐼⟶ℕ0 ∧ (◡(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) “ ℕ) ∈ Fin))) |
21 | 7, 17, 20 | mpbir2and 692 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 𝑁, 0)) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ifcif 4225 class class class wbr 4786 ↦ cmpt 4863 ◡ccnv 5248 “ cima 5252 ⟶wf 6027 (class class class)co 6793 ↑𝑚 cmap 8009 Fincfn 8109 finSupp cfsupp 8431 0cc0 10138 ℕcn 11222 ℕ0cn0 11494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 |
This theorem is referenced by: fczpsrbag 19582 mvrid 19638 mvrf1 19640 mplcoe3 19681 mplcoe5 19683 |
Copyright terms: Public domain | W3C validator |