![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snfbas | Structured version Visualization version GIF version |
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
snfbas | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4939 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | 3adant2 1125 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
3 | simp2 1131 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ≠ ∅) | |
4 | snfil 21888 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴)) | |
5 | 2, 3, 4 | syl2anc 573 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (Fil‘𝐴)) |
6 | filfbas 21872 | . . 3 ⊢ ({𝐴} ∈ (Fil‘𝐴) → {𝐴} ∈ (fBas‘𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐴)) |
8 | simp1 1130 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ 𝐵) | |
9 | elpw2g 4959 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
10 | 9 | 3ad2ant3 1129 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
11 | 8, 10 | mpbird 247 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
12 | 11 | snssd 4476 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ⊆ 𝒫 𝐵) |
13 | simp3 1132 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
14 | fbasweak 21889 | . 2 ⊢ (({𝐴} ∈ (fBas‘𝐴) ∧ {𝐴} ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) | |
15 | 7, 12, 13, 14 | syl3anc 1476 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉) → {𝐴} ∈ (fBas‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4298 {csn 4317 ‘cfv 6030 fBascfbas 19949 Filcfil 21869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fv 6038 df-fbas 19958 df-fil 21870 |
This theorem is referenced by: isufil2 21932 ufileu 21943 filufint 21944 uffix 21945 flimclslem 22008 |
Copyright terms: Public domain | W3C validator |