MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqrg Structured version   Visualization version   GIF version

Theorem sneqrg 4507
Description: Closed form of sneqr 4508. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
StepHypRef Expression
1 snidg 4343 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 eleq2 2820 . . 3 ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵}))
31, 2syl5ibcom 235 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}))
4 elsng 4327 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
53, 4sylibd 229 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1624  wcel 2131  {csn 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-v 3334  df-sn 4314
This theorem is referenced by:  sneqr  4508  sneqbg  4511  altopth1  32370  altopth2  32371
  Copyright terms: Public domain W3C validator