MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqr Structured version   Visualization version   GIF version

Theorem sneqr 4403
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . 2 𝐴 ∈ V
2 sneqrg 4402 . 2 (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
31, 2ax-mp 5 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  {csn 4210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sn 4211
This theorem is referenced by:  snsssn  4404  sneqrgOLD  4405  opth1  4973  propeqop  4999  opthwiener  5005  funsndifnop  6456  canth2  8154  axcc2lem  9296  hashge3el3dif  13306  dis2ndc  21311  axlowdim1  25884  bj-snsetex  33076  poimirlem13  33552  poimirlem14  33553  wopprc  37914  hoidmv1le  41129
  Copyright terms: Public domain W3C validator