![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4323 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 {csn 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-sn 4314 |
This theorem is referenced by: fnressn 6580 fressnfv 6582 snriota 6796 xpassen 8211 ids1 13559 s3tpop 13846 bpoly3 14980 strlemor1OLD 16163 strle1 16167 2strop1 16182 ghmeqker 17880 pws1 18808 pwsmgp 18810 lpival 19439 mat1dimelbas 20471 mat1dim0 20473 mat1dimid 20474 mat1dimscm 20475 mat1dimmul 20476 mat1f1o 20478 imasdsf1olem 22371 vtxval3sn 26126 iedgval3sn 26127 uspgr1v1eop 26332 hh0oi 29063 eulerpartlemmf 30738 bnj601 31289 dffv5 32329 zrdivrng 34057 isdrngo1 34060 mapfzcons 37773 mapfzcons1 37774 mapfzcons2 37776 df3o3 38817 fourierdlem80 40898 lmod1zr 42784 |
Copyright terms: Public domain | W3C validator |