![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sndisj | Structured version Visualization version GIF version |
Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
sndisj | ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4774 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 {𝑥} ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) | |
2 | moeq 3523 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝑦 | |
3 | simpr 479 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 ∈ {𝑥}) | |
4 | velsn 4337 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
5 | 3, 4 | sylib 208 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑦 = 𝑥) |
6 | 5 | equcomd 2101 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) → 𝑥 = 𝑦) |
7 | 6 | moimi 2658 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝑦 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥})) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑥}) |
9 | 1, 8 | mpgbir 1875 | 1 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2139 ∃*wmo 2608 {csn 4321 Disj wdisj 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rmo 3058 df-v 3342 df-sn 4322 df-disj 4773 |
This theorem is referenced by: 0disj 4797 sibfof 30711 disjsnxp 39738 vonct 41413 |
Copyright terms: Public domain | W3C validator |