MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupp1 Structured version   Visualization version   GIF version

Theorem smupp1 15409
Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smupp1 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupp1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 11923 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2859 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 13022 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . 3 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6333 . . 3 (𝑃‘(𝑁 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6333 . . . 4 (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 6802 . . 3 ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2829 . 2 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 1nn0 11509 . . . . . . 7 1 ∈ ℕ0
1211a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
131, 12nn0addcld 11556 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
14 eqeq1 2774 . . . . . . 7 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
15 oveq1 6799 . . . . . . 7 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1614, 15ifbieq2d 4248 . . . . . 6 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
17 eqid 2770 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
18 0ex 4921 . . . . . . 7 ∅ ∈ V
19 ovex 6822 . . . . . . 7 ((𝑁 + 1) − 1) ∈ V
2018, 19ifex 4293 . . . . . 6 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
2116, 17, 20fvmpt 6424 . . . . 5 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
2213, 21syl 17 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
23 nn0p1nn 11533 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
241, 23syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ)
2524nnne0d 11266 . . . . 5 (𝜑 → (𝑁 + 1) ≠ 0)
26 ifnefalse 4235 . . . . 5 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2725, 26syl 17 . . . 4 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
281nn0cnd 11554 . . . . 5 (𝜑𝑁 ∈ ℂ)
2912nn0cnd 11554 . . . . 5 (𝜑 → 1 ∈ ℂ)
3028, 29pncand 10594 . . . 4 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3122, 27, 303eqtrd 2808 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3231oveq2d 6808 . 2 (𝜑 → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁))
33 smuval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
34 smuval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
3533, 34, 6smupf 15407 . . . 4 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
3635, 1ffvelrnd 6503 . . 3 (𝜑 → (𝑃𝑁) ∈ 𝒫 ℕ0)
37 simpl 468 . . . . 5 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝑃𝑁))
38 simpr 471 . . . . . . . . 9 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3938eleq1d 2834 . . . . . . . 8 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
4038oveq2d 6808 . . . . . . . . 9 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑘𝑦) = (𝑘𝑁))
4140eleq1d 2834 . . . . . . . 8 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → ((𝑘𝑦) ∈ 𝐵 ↔ (𝑘𝑁) ∈ 𝐵))
4239, 41anbi12d 608 . . . . . . 7 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → ((𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵) ↔ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)))
4342rabbidv 3338 . . . . . 6 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)})
44 oveq1 6799 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘𝑁) = (𝑛𝑁))
4544eleq1d 2834 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑘𝑁) ∈ 𝐵 ↔ (𝑛𝑁) ∈ 𝐵))
4645anbi2d 606 . . . . . . 7 (𝑘 = 𝑛 → ((𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵) ↔ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)))
4746cbvrabv 3348 . . . . . 6 {𝑘 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}
4843, 47syl6eq 2820 . . . . 5 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)})
4937, 48oveq12d 6810 . . . 4 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
50 oveq1 6799 . . . . 5 (𝑝 = 𝑥 → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))
51 eleq1w 2832 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
52 oveq2 6800 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑛𝑚) = (𝑛𝑦))
5352eleq1d 2834 . . . . . . . . 9 (𝑚 = 𝑦 → ((𝑛𝑚) ∈ 𝐵 ↔ (𝑛𝑦) ∈ 𝐵))
5451, 53anbi12d 608 . . . . . . . 8 (𝑚 = 𝑦 → ((𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵) ↔ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)))
5554rabbidv 3338 . . . . . . 7 (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)})
56 oveq1 6799 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝑦) = (𝑛𝑦))
5756eleq1d 2834 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑘𝑦) ∈ 𝐵 ↔ (𝑛𝑦) ∈ 𝐵))
5857anbi2d 606 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵) ↔ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)))
5958cbvrabv 3348 . . . . . . 7 {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)}
6055, 59syl6eqr 2822 . . . . . 6 (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)})
6160oveq2d 6808 . . . . 5 (𝑚 = 𝑦 → (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}))
6250, 61cbvmpt2v 6881 . . . 4 (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})) = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ ℕ0 ↦ (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}))
63 ovex 6822 . . . 4 ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}) ∈ V
6449, 62, 63ovmpt2a 6937 . . 3 (((𝑃𝑁) ∈ 𝒫 ℕ0𝑁 ∈ ℕ0) → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
6536, 1, 64syl2anc 565 . 2 (𝜑 → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
6610, 32, 653eqtrd 2808 1 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  {crab 3064  wss 3721  c0 4061  ifcif 4223  𝒫 cpw 4295  cmpt 4861  cfv 6031  (class class class)co 6792  cmpt2 6794  0cc0 10137  1c1 10138   + caddc 10140  cmin 10467  cn 11221  0cn0 11493  cuz 11887  seqcseq 13007   sadd csad 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-had 1680  df-cad 1693  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-seq 13008  df-sad 15380
This theorem is referenced by:  smuval2  15411  smupvallem  15412  smu01lem  15414  smupval  15417  smup1  15418  smueqlem  15419
  Copyright terms: Public domain W3C validator