MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smorndom Structured version   Visualization version   GIF version

Theorem smorndom 7617
Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.)
Assertion
Ref Expression
smorndom ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)

Proof of Theorem smorndom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1226 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹:𝐴𝐵)
2 ffn 6185 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 17 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝐹 Fn 𝐴)
4 simpl2 1228 . . . . . 6 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Smo 𝐹)
5 smodm2 7604 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
63, 4, 5syl2anc 565 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐴)
7 ordelord 5888 . . . . 5 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
86, 7sylancom 568 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝑥)
9 simpl3 1230 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → Ord 𝐵)
10 simpr 471 . . . . 5 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
11 smogt 7616 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
123, 4, 10, 11syl3anc 1475 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
13 ffvelrn 6500 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
14133ad2antl1 1199 . . . 4 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
15 ordtr2 5911 . . . . 5 ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥𝐵))
1615imp 393 . . . 4 (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ∈ 𝐵)) → 𝑥𝐵)
178, 9, 12, 14, 16syl22anc 1476 . . 3 (((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
1817ex 397 . 2 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥𝐴𝑥𝐵))
1918ssrdv 3756 1 ((𝐹:𝐴𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070  wcel 2144  wss 3721  Ord word 5865   Fn wfn 6026  wf 6027  cfv 6031  Smo wsmo 7594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-ord 5869  df-on 5870  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-smo 7595
This theorem is referenced by:  cofsmo  9292  hsmexlem1  9449
  Copyright terms: Public domain W3C validator