![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smorndom | Structured version Visualization version GIF version |
Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
Ref | Expression |
---|---|
smorndom | ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1226 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶𝐵) | |
2 | ffn 6185 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 𝐴) |
4 | simpl2 1228 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Smo 𝐹) | |
5 | smodm2 7604 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | |
6 | 3, 4, 5 | syl2anc 565 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐴) |
7 | ordelord 5888 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
8 | 6, 7 | sylancom 568 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
9 | simpl3 1230 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → Ord 𝐵) | |
10 | simpr 471 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | smogt 7616 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) | |
12 | 3, 4, 10, 11 | syl3anc 1475 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐹‘𝑥)) |
13 | ffvelrn 6500 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
14 | 13 | 3ad2antl1 1199 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
15 | ordtr2 5911 | . . . . 5 ⊢ ((Ord 𝑥 ∧ Ord 𝐵) → ((𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) | |
16 | 15 | imp 393 | . . . 4 ⊢ (((Ord 𝑥 ∧ Ord 𝐵) ∧ (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑥) ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
17 | 8, 9, 12, 14, 16 | syl22anc 1476 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
18 | 17 | ex 397 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
19 | 18 | ssrdv 3756 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 ⊆ wss 3721 Ord word 5865 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 Smo wsmo 7594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-ord 5869 df-on 5870 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-smo 7595 |
This theorem is referenced by: cofsmo 9292 hsmexlem1 9449 |
Copyright terms: Public domain | W3C validator |