MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smogt Structured version   Visualization version   GIF version

Theorem smogt 7461
Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
smogt ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))

Proof of Theorem smogt
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑥 = 𝐶𝑥 = 𝐶)
2 fveq2 6189 . . . . . 6 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
31, 2sseq12d 3632 . . . . 5 (𝑥 = 𝐶 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐶 ⊆ (𝐹𝐶)))
43imbi2d 330 . . . 4 (𝑥 = 𝐶 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶))))
5 smodm2 7449 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
653adant3 1080 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝐴)
7 simp3 1062 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥𝐴)
8 ordelord 5743 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
96, 7, 8syl2anc 693 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝑥)
10 vex 3201 . . . . . . . . 9 𝑥 ∈ V
1110elon 5730 . . . . . . . 8 (𝑥 ∈ On ↔ Ord 𝑥)
129, 11sylibr 224 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ∈ On)
13 eleq1 2688 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
14133anbi3d 1404 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ↔ (𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴)))
15 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
16 fveq2 6189 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1715, 16sseq12d 3632 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑦 ⊆ (𝐹𝑦)))
1814, 17imbi12d 334 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦))))
19 simpl1 1063 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝐹 Fn 𝐴)
20 simpl2 1064 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → Smo 𝐹)
21 ordtr1 5765 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2221expcomd 454 . . . . . . . . . . . . . 14 (Ord 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
236, 7, 22sylc 65 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥𝑦𝐴))
2423imp 445 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝑦𝐴)
25 pm2.27 42 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2619, 20, 24, 25syl3anc 1325 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2726ralimdva 2961 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦)))
2853adant3 1080 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝐴)
29 simp31 1096 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑥𝐴)
3028, 29, 8syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑥)
31 simp32 1097 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦𝑥)
32 ordelord 5743 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
3330, 31, 32syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑦)
34 smofvon2 7450 . . . . . . . . . . . . . . . . . . 19 (Smo 𝐹 → (𝐹𝑥) ∈ On)
35343ad2ant2 1082 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑥) ∈ On)
36 eloni 5731 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ On → Ord (𝐹𝑥))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord (𝐹𝑥))
38 simp33 1098 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ⊆ (𝐹𝑦))
39 smoel2 7457 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥)) → (𝐹𝑦) ∈ (𝐹𝑥))
40393adantr3 1221 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
41403impa 1258 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
42 ordtr2 5766 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦 ∧ Ord (𝐹𝑥)) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥)) → 𝑦 ∈ (𝐹𝑥)))
4342imp 445 . . . . . . . . . . . . . . . . 17 (((Ord 𝑦 ∧ Ord (𝐹𝑥)) ∧ (𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥))) → 𝑦 ∈ (𝐹𝑥))
4433, 37, 38, 41, 43syl22anc 1326 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ∈ (𝐹𝑥))
45443expia 1266 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦)) → 𝑦 ∈ (𝐹𝑥)))
46453expd 1283 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴 → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))))
47463impia 1260 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥))))
4847imp 445 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))
4948ralimdva 2961 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥)))
50 dfss3 3590 . . . . . . . . . . 11 (𝑥 ⊆ (𝐹𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥))
5149, 50syl6ibr 242 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑥)))
5227, 51syldc 48 . . . . . . . . 9 (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5352a1i 11 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))))
5418, 53tfis2 7053 . . . . . . 7 (𝑥 ∈ On → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5512, 54mpcom 38 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
56553expia 1266 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴𝑥 ⊆ (𝐹𝑥)))
5756com12 32 . . . 4 (𝑥𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)))
584, 57vtoclga 3270 . . 3 (𝐶𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶)))
5958com12 32 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝐶𝐴𝐶 ⊆ (𝐹𝐶)))
60593impia 1260 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911  wss 3572  Ord word 5720  Oncon0 5721   Fn wfn 5881  cfv 5886  Smo wsmo 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-ord 5724  df-on 5725  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fv 5894  df-smo 7440
This theorem is referenced by:  smorndom  7462  oismo  8442
  Copyright terms: Public domain W3C validator