MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel Structured version   Visualization version   GIF version

Theorem smoel 7609
Description: If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel ((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))

Proof of Theorem smoel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 7600 . . . . 5 (Smo 𝐵 → Ord dom 𝐵)
2 ordtr1 5910 . . . . . . 7 (Ord dom 𝐵 → ((𝐶𝐴𝐴 ∈ dom 𝐵) → 𝐶 ∈ dom 𝐵))
32ancomsd 456 . . . . . 6 (Ord dom 𝐵 → ((𝐴 ∈ dom 𝐵𝐶𝐴) → 𝐶 ∈ dom 𝐵))
43expdimp 440 . . . . 5 ((Ord dom 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴𝐶 ∈ dom 𝐵))
51, 4sylan 561 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴𝐶 ∈ dom 𝐵))
6 df-smo 7595 . . . . . 6 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
7 eleq1 2837 . . . . . . . . . . 11 (𝑥 = 𝐶 → (𝑥𝑦𝐶𝑦))
8 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
98eleq1d 2834 . . . . . . . . . . 11 (𝑥 = 𝐶 → ((𝐵𝑥) ∈ (𝐵𝑦) ↔ (𝐵𝐶) ∈ (𝐵𝑦)))
107, 9imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ (𝐶𝑦 → (𝐵𝐶) ∈ (𝐵𝑦))))
11 eleq2 2838 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐶𝑦𝐶𝐴))
12 fveq2 6332 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐵𝑦) = (𝐵𝐴))
1312eleq2d 2835 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐵𝐶) ∈ (𝐵𝑦) ↔ (𝐵𝐶) ∈ (𝐵𝐴)))
1411, 13imbi12d 333 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝐶𝑦 → (𝐵𝐶) ∈ (𝐵𝑦)) ↔ (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1510, 14rspc2v 3470 . . . . . . . . 9 ((𝐶 ∈ dom 𝐵𝐴 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1615ancoms 455 . . . . . . . 8 ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
1716com12 32 . . . . . . 7 (∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
18173ad2ant3 1128 . . . . . 6 ((𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))) → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
196, 18sylbi 207 . . . . 5 (Smo 𝐵 → ((𝐴 ∈ dom 𝐵𝐶 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
2019expdimp 440 . . . 4 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶 ∈ dom 𝐵 → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
215, 20syld 47 . . 3 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴 → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴))))
2221pm2.43d 53 . 2 ((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐶𝐴 → (𝐵𝐶) ∈ (𝐵𝐴)))
23223impia 1108 1 ((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  dom cdm 5249  Ord word 5865  Oncon0 5866  wf 6027  cfv 6031  Smo wsmo 7594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-tr 4885  df-ord 5869  df-iota 5994  df-fv 6039  df-smo 7595
This theorem is referenced by:  smoiun  7610  smoel2  7612
  Copyright terms: Public domain W3C validator