![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smodm2 | Structured version Visualization version GIF version |
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm 7605 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
2 | fndm 6139 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | ordeq 5879 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
5 | 4 | biimpa 502 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
6 | 1, 5 | sylan2 492 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 dom cdm 5254 Ord word 5871 Fn wfn 6032 Smo wsmo 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-in 3710 df-ss 3717 df-uni 4577 df-tr 4893 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-ord 5875 df-fn 6040 df-smo 7600 |
This theorem is referenced by: smo11 7618 smoord 7619 smoword 7620 smogt 7621 smorndom 7622 coftr 9258 |
Copyright terms: Public domain | W3C validator |