![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smo0 | Structured version Visualization version GIF version |
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
Ref | Expression |
---|---|
smo0 | ⊢ Smo ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 5939 | . . 3 ⊢ Ord ∅ | |
2 | 1 | iordsmo 7625 | . 2 ⊢ Smo ( I ↾ ∅) |
3 | res0 5556 | . . 3 ⊢ ( I ↾ ∅) = ∅ | |
4 | smoeq 7618 | . . 3 ⊢ (( I ↾ ∅) = ∅ → (Smo ( I ↾ ∅) ↔ Smo ∅)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Smo ( I ↾ ∅) ↔ Smo ∅) |
6 | 2, 5 | mpbi 220 | 1 ⊢ Smo ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∅c0 4059 I cid 5174 ↾ cres 5269 Smo wsmo 7613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-ord 5888 df-on 5889 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-smo 7614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |