Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupxr Structured version   Visualization version   GIF version

Theorem smfsupxr 41528
 Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupxr.n 𝑛𝐹
smfsupxr.x 𝑥𝐹
smfsupxr.m (𝜑𝑀 ∈ ℤ)
smfsupxr.z 𝑍 = (ℤ𝑀)
smfsupxr.s (𝜑𝑆 ∈ SAlg)
smfsupxr.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupxr.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
smfsupxr.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
Assertion
Ref Expression
smfsupxr (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝑍,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfsupxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smfsupxr.g . . . 4 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )))
3 smfsupxr.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
43a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
5 nfv 1992 . . . . . . . 8 𝑛𝜑
6 nfcv 2902 . . . . . . . . 9 𝑛𝑥
7 nfii1 4703 . . . . . . . . 9 𝑛 𝑛𝑍 dom (𝐹𝑛)
86, 7nfel 2915 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
95, 8nfan 1977 . . . . . . 7 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
10 smfsupxr.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 smfsupxr.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1210, 11uzn0d 40150 . . . . . . . 8 (𝜑𝑍 ≠ ∅)
1312adantr 472 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → 𝑍 ≠ ∅)
14 smfsupxr.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
1514adantr 472 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
16 smfsupxr.f . . . . . . . . . . 11 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1716ffvelrnda 6522 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
18 eqid 2760 . . . . . . . . . 10 dom (𝐹𝑛) = dom (𝐹𝑛)
1915, 17, 18smff 41447 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2019adantlr 753 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
21 eliinid 39793 . . . . . . . . 9 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2221adantll 752 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 22ffvelrnd 6523 . . . . . . 7 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
249, 13, 23supxrre3rnmpt 40154 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
2524rabbidva 3328 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
264, 25eqtrd 2794 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
27 nfmpt1 4899 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
2827nfrn 5523 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
29 nfcv 2902 . . . . . . . . . . 11 𝑛*
30 nfcv 2902 . . . . . . . . . . 11 𝑛 <
3128, 29, 30nfsup 8522 . . . . . . . . . 10 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )
32 nfcv 2902 . . . . . . . . . 10 𝑛
3331, 32nfel 2915 . . . . . . . . 9 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ
3433, 7nfrab 3262 . . . . . . . 8 𝑛{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
353, 34nfcxfr 2900 . . . . . . 7 𝑛𝐷
366, 35nfel 2915 . . . . . 6 𝑛 𝑥𝐷
375, 36nfan 1977 . . . . 5 𝑛(𝜑𝑥𝐷)
3812adantr 472 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
3919adantlr 753 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
40 nfcv 2902 . . . . . . . . . . . 12 𝑥𝑍
41 smfsupxr.x . . . . . . . . . . . . . 14 𝑥𝐹
42 nfcv 2902 . . . . . . . . . . . . . 14 𝑥𝑛
4341, 42nffv 6359 . . . . . . . . . . . . 13 𝑥(𝐹𝑛)
4443nfdm 5522 . . . . . . . . . . . 12 𝑥dom (𝐹𝑛)
4540, 44nfiin 4701 . . . . . . . . . . 11 𝑥 𝑛𝑍 dom (𝐹𝑛)
4645ssrab2f 39799 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑛𝑍 dom (𝐹𝑛)
473, 46eqsstri 3776 . . . . . . . . 9 𝐷 𝑛𝑍 dom (𝐹𝑛)
48 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
4947, 48sseldi 3742 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
5049, 21sylan 489 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5150adantll 752 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5239, 51ffvelrnd 6523 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5348, 3syl6eleq 2849 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
54 rabidim2 39783 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5553, 54syl 17 . . . . . . 7 (𝑥𝐷 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5655adantl 473 . . . . . 6 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5749adantl 473 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
5857, 24syldan 488 . . . . . 6 ((𝜑𝑥𝐷) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
5956, 58mpbid 222 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6037, 38, 52, 59supxrrernmpt 40146 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6126, 60mpteq12dva 4884 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
622, 61eqtrd 2794 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
63 smfsupxr.n . . 3 𝑛𝐹
64 eqid 2760 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
65 eqid 2760 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6663, 41, 10, 11, 14, 16, 64, 65smfsup 41526 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
6762, 66eqeltrd 2839 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Ⅎwnfc 2889   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  {crab 3054  ∅c0 4058  ∩ ciin 4673   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ran crn 5267  ⟶wf 6045  ‘cfv 6049  supcsup 8511  ℝcr 10127  ℝ*cxr 10265   < clt 10266   ≤ cle 10267  ℤcz 11569  ℤ≥cuz 11879  SAlgcsalg 41031  SMblFncsmblfn 41415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-ac2 9477  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-ac 9129  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-ioo 12372  df-ioc 12373  df-ico 12374  df-fl 12787  df-rest 16285  df-topgen 16306  df-top 20901  df-bases 20952  df-salg 41032  df-salgen 41036  df-smblfn 41416 This theorem is referenced by:  smflimsuplem3  41534
 Copyright terms: Public domain W3C validator